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Clustering and ordering in cell assemblies with generic asymmetric aligning interactions

Thibault Bertrand ,1,* Joseph d’Alessandro ,2 Ananyo Maitra ,3,4 Shreyansh Jain ,2 Barbara Mercier,2

René-Marc Mège ,2 Benoit Ladoux ,2,† and Raphaël Voituriez 4,5,‡

1Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
2Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France

3Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95032 Cergy-Pontoise Cedex, France
4Laboratoire Jean Perrin, UMR 8237 CNRS, Sorbonne Université, 75005 Paris, France

5Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS, Sorbonne Université, 75005 Paris, France

(Received 15 September 2021; accepted 21 February 2024; published 4 April 2024)

Collective cell migration plays an essential role in various biological processes, such as development or
cancer proliferation. While cell-cell interactions are clearly key determinants of collective cell migration, the
physical mechanisms that control the emergence of cell clustering and collective cell migration are still poorly
understood. In particular, observations have shown that binary cell-cell collisions generally lead to antialignment
of cell polarities and separation of pairs—a process called contact inhibition of locomotion (CIL), which is
expected to disfavor the formation of large-scale cell clusters with coherent motion even though the latter is often
observed in tissues. To solve this puzzle, we adopt a joint experimental and theoretical approach to determine
the large-scale dynamics of cell assemblies from elementary pairwise cell-cell interaction rules. We quantify
experimentally binary cell-cell interactions and show that they can be captured by a minimal equilibriumlike
pairwise asymmetric aligning interaction potential that reproduces the CIL phenomenology. We identify its
symmetry class, build the corresponding active hydrodynamic theory, and show on general grounds that such
asymmetric aligning interaction destroys large-scale clustering and ordering, leading instead to a liquidlike
microphase of cell clusters of finite size and short lived polarity or to a fully dispersed isotropic phase. Finally,
this shows that CIL-like asymmetric interactions in cellular systems—or general active systems—control cluster
sizes and polarity, and can prevent large-scale coarsening and long-range polarity, except in the singular regime
of dense confluent systems.

DOI: 10.1103/PhysRevResearch.6.023022

I. INTRODUCTION

The emergence of collective, coordinated migration is a
striking property of eukaryotic cell collectives [1–4]. It is ob-
served in key biological processes in vivo such as development
[5,6], cancer proliferation [7,8], and wound healing [9], and
has now been reproduced in various in vitro setups [10–17].
This ability of cells to form large-scale cohesive, polarized,
self-propelled clusters is expected to be controlled both by
single cell properties (polarity and motility) and cell-cell in-
teractions, as is confirmed experimentally [15,18–22].

The effects of cell-cell interactions on collective cell
dynamics are twofold. Upon contact, cells can engage trans-
membrane adhesion molecules (such as cadherins) to form
junctions [15]. On the one hand, these cell-cell junctions
act as an effective attractive force that opposes the sepa-
ration of cell pairs and therefore favors cell clustering. On
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the other hand, it was found that cell-cell junctions also im-
pact cell polarity; indeed, binary cell-cell interaction events
are reported to typically favor outward pointing, antialigned
polarities and, ultimately, separation of cell pairs. In the lit-
erature, this is generically known as contact inhibition of
locomotion (CIL) [23], even though quantitative experimental
analysis of the phenomenon remains sparse [24–27]. Thus far,
the paradigm introduced by CIL, which favors antialignment
and separation of pairs, therefore seems inconsistent with the
observation of large-scale cell clusters with coherent motion
[17,24,25,28–30]; reconciling these observations and more
generally determining, from the knowledge of basic pairwise
cell-cell interaction rules, the conditions of emergence of
cell clustering and collective motion remains an outstanding
open question.

Cell motility generically relies on the nonequilibrium dy-
namics of the actin/myosin system, driven by adenosine
triphosphate (ATP) hydrolysis; from a physics standpoint,
this makes the cell a prototypical self-propelled particle
(SPP) and cell assemblies a striking example of active
matter [31,32]. Active matter based models of collec-
tive cell migration, which involve—explicit or implicit—
specific choices of cell-cell interaction rules have flour-
ished [33]; these can take various forms, from agent-
based models [21,28,29,34–38] and active vertex models
[18,39,40] to active hydrodynamics models [16,41,42] and
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phase fields models [43,44]. They point, mostly through
numerical simulations, to a broad variety of possible phases
that can help interpret experimental observations. In particu-
lar, agent-based models endowed with ad hoc interaction rules
aiming at mimicking the CIL phenomenology have been pro-
posed, and pointed to a rich phenomenology [24,25,28,29,45].

Even the simplest interactions between SPPs can, in fact,
have striking consequences at the collective level. For in-
stance, a simple pairwise aligning interaction between SPPs,
as introduced by Vicsek et al. [46], can lead to clustering
and large-scale collective motion in settings where long-range
order and phase separation would be forbidden for systems
at equilibrium [31,32]. Another purely nonequilibrium col-
lective effect is the propensity of SPPs to cluster or undergo
phase separation in the presence of purely repulsive interac-
tions [47,48]. A systematic exploration of the phase space of
possible behaviors for more realistic models of cell assemblies
with specific interaction rules is expected to lead to an ever-
increasing complexity and therefore seems inaccessible. In
this context, hydrodynamic theories, which are insensitive to
specific microscopic choices but governed by symmetry prop-
erties and conservation rules [31,32] are promising candidates
to provide unifying principles.

Here, we adopt a joint experimental and theoretical ap-
proach that integrates quantitative multiscale in vitro data,
numerical simulations and active hydrodynamic theory to
determine the conditions of emergence of clustering and
collective motion in cell assemblies. We make use of micro-
fabricated in vitro environments to quantitatively characterize
the onset of cell clustering and collective motion from the
scale of cell pairs to the scale of large aggregates in 1D and
2D. Rather than building a computational model based on
ad hoc interaction rules [28,29], we experimentally analyze
pairwise cell-cell interactions and show that the observed
CIL phenomenology can be rationalized by a minimal equi-
libriumlike asymmetric aligning interaction potential whose
symmetry class we identify. Based on experimental observa-
tions, we combine such an asymmetric aligning interaction
with a classical short-range attractive potential that mimics
cell-cell junctions, build the corresponding active agent-based
model and propose a minimal active hydrodynamic theory
of this symmetry class. We show both experimentally and
theoretically that the asymmetric aligning interaction can
drastically lower the persistence of finite cell clusters and
reduce their size. We demonstrate that in the large system limit
this can lead to a transition between a dispersed (gas) isotropic
phase and a liquidlike microphase of cell clusters of finite size
and short-lived polarity, which is critically controlled by both
the strength of the asymmetric interaction and the cells’ self-
propulsion force. Our results are applicable to general active
systems of the same symmetry class and show that CIL-like
interactions can regulate cluster sizes and polarity and, in par-
ticular, prevent large-scale coarsening and long-range polarity,
except in the singular regime of dense confluent systems.

II. CIL AS A PAIRWISE EQUILIBRIUMLIKE
INTERACTION POTENTIAL IN MDCK CELLS

We first aim at characterizing quantitatively pairwise cell-
cell interactions rules. Previous studies analyzed the scattering

rules of various cell types upon contact in similar 1D ge-
ometries [24–27]. These studies were mostly restricted to
the analysis of cell behaviors immediately following con-
tact, with the aim of determining scattering rules. Here, we
extended our analysis to longer timescales, while cells dy-
namically explored all available configurations, with the aim
of determining effective energy landscapes similar to those
of equilibrium interacting spins. We used MDCK (Madine-
Darby canine kidney) cells plated on fibronectin-coated linear
strips of width w = 20 µm, which we obtained by micro-
contact printing on polydimethylsiloxane (PDMS) [49]. Cells
were treated with mitomycin C to prevent cell division and
maintain cell numbers. In this geometry, cell motion is re-
stricted to a single dimension and cell-cell interactions are
limited to front-rear interactions. To study the dynamics of
front-rear cell polarization, we use a fluorescent biosensor
(p21-activated kinase binding domain, PBD) of active Rac1
and Cdc42 [50], whose gradient along the cell indicates the
direction of its polarity.

At the scale of a pair of cells, CIL dictates distinctive inter-
cellular dynamical rules that have been described qualitatively
in the literature [23,51]. Upon contact, cell-cell junctions are
formed and trigger mechanotransduction signals, leading to
the repolarization of the two cells away from the contact loca-
tion. To confirm this phenomenology, we observe the possible
outcomes of binary cell collisions. Prior to collision, incom-
ing cells show clear signs of polarization, with asymmetric
internal organization and shape, and a stable lamellipodium
at the leading edge [see Figs. 1(a) and 1(b)]. Upon contact
between the lamellipodia, we typically observe inversions of
the PBD gradient, signaling an inversion of cell polarity, with
two possible outcomes: (i) both cells repolarize away from
the contact [see Fig. 1(a)] or (ii) only one of the two cells
repolarizes away from the contact, leading to the alignment of
cell polarities [see Fig. 1(b)]. Because in this cell type cell-cell
adhesion is strong, even in case (i) the cells do not separate im-
mediately after repolarizing, but instead form a stable doublet
which can stay cohesive for several hours [Fig. 1(c)]. In 1D
geometries, the sign of the polarity gradient is used to map
this continuous measure of cellular polarity to a binary ±1
spinlike variable.

Following the motion and polarities of both cells of the
doublet in time, we notice that they stochastically switch
their polarity and therefore spontaneously explore all possi-
ble accessible configurations (see Fig. 1(d) and Supplemental
Material (SM) Fig. S1 and Movie S1 [52]). From several such
time series, we measure the respective probabilities of the
four possible configurations [Fig. 1(e)]. We observe a bias in
those probabilities: tail-tail configurations (←→) are strongly
favored compared to head-head configurations (→←), while
the frequency of tail-head configurations (←←) is not raised.
Note that, as expected, symmetric configurations (←← and
→→) are equally probable. This quantitatively confirms the
presence of CIL in those cells, although it exhibits more com-
plex consequences than simple elastic rebounds upon cell-cell
contact, even at the scale of the doublet. In analogy with
equilibrium spin dynamics, we associate an energy level Ei j

to each of the polarity states of the cell couple {i, j}, so
its probability is given by Pi j = exp(−Ei j )/Z , where Z is a
normalization factor [Fig. 1(f)].
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FIG. 1. Scattering rules in cell doublets. Potential outcomes of a collision between two cells: (a) contact inhibition of locomotion (CIL)
and (b) cell alignment shown in transmission (left) and in PBD-YFP fluorescence (right); in both panels, time progresses from top to bottom
with consecutive snapshots separated by �t = 10 min, scale bar = 50 µm. (c) Position of a cell doublet as a function of time; the shaded grey
areas correspond to moments where the cells are not in contact. (d) Polarity of the cell doublet at corresponding times (see SM, Fig. S1 [52]).
(e) Probabilities for the four possible polarity configurations measured from a total of 3271 data points obtained from the analysis n = 34 cell
doublets in two independent experiments; colors correspond to the highlighted regions in (c). (f) Schematic of the model with the energy levels
Ei j of the four possible doublet configurations with values of α/β ≈ 2 obtained from the probabilities in (e).

III. MINIMAL ACTIVE PARTICLE MODEL WITH
ASYMMETRIC ALIGNING INTERACTIONS

Based on these quantitative observations, we build a model
of active Brownian particles (ABPs) which includes minimal
asymmetric interaction rules that describe the observed CIL
phenomenology. The model is introduced in arbitrary space
dimension d , but numerical simulations will be performed
mostly for d = 1 to reproduce the experimental setup; exten-
sions to d = 2 will be discussed in the last section. Each cell
is described as a particle with position ri and endowed with a
polarity vector pi (a unit vector). We start from an equilibrium
description and assume that cell-cell interactions result from
a microscopic Hamiltonian given by

H =
∑
i, j

Ur (ri, r j ) + Up(ri, r j, pi, p j ). (1)

The position-dependent part that models cell-cell steric repul-
sion and adhesion can be taken to be the classical truncated
Lennard-Jones potential,

Ur =
{

4ε[(σ/ri j )12 − (σ/ri j )6] ri j � rc

0 ri j > rc,
(2)

where ri j = ri − r j , ri j = |ri j |, and rc defines the range of in-
teraction and σ the particle size. Our main conclusions will be
independent of this specific choice, which is used in numerical
simulations for convenience. To build the polarity interaction

potential Up, we note that (for example, in d = 2) the CIL
interaction explicitly breaks the invariance under independent
rotations of space and polarity vectors, which is preserved by
classical aligning interactions ∝ pi · p j characteristic of XY
models or their active counterparts, the class of Vicsek-like
models [31,32,46,53,54]. More explicitly, for fixed positions
ri, r j of an interacting pair, the CIL phenomenology dictates
that the system is not invariant under the symmetry pi, p j →
−pi,−p j and, therefore, cannot simply be described via a
potential ∝ pi · p j . Expanding in powers of ri j and pi, p j , the
simplest term that breaks the invariance under independent
rotations of space and polarity vectors, while being invariant
under their joint rotation, has the form (pi − p j ) · ri j . With-
out loss of generality, we therefore consider an interaction
potential of the form

Up =
{−βpi · p j − α(pi − p j ) · ni j ri j � rc

0 ri j > rc,
(3)

where ni j = ri j/ri j . This interaction potential is composed of
two terms: (1) a Vicsek or XY-like alignment term with inter-
action strength β, which, by construction, is invariant under
independent rotations of space and polarity vectors and (2) an
asymmetric alignment term of amplitude α which explicitly
breaks this symmetry and reproduces the CIL phenomenol-
ogy. Of note, potentials of the same symmetry class have
been considered in the study of liquid crystals [55], but their
effect in active matter systems have not been systematically
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examined. From the measure of the probabilities for each
cell doublet configuration [see Fig. 1(e)], we can estimate
the value of the relative strength of the alignment interactions
and find that our experiments lead to α/β ≈ 2, leading to the
polarity energy levels shown in Fig. 1(f) (see Appendix C).

Finally, this so-far equilibrium description is made min-
imally active by assuming that particles are subject to the
self-propelling force Fp along their polarity pi. Our model
can thus be interpreted as a generalization of the flying
XY model [56], with an additional asymmetric interaction
term that couples polarity and position and a short-scale
steric repulsion. More explicitly, for d � 2, the dynam-
ics of the system in the overdamped limit is governed by
the set of coupled Langevin equations (see Appendix E
for d = 1),

ζ ṙi = −∂H
∂ri

+ Fppi +
√

2T ζηi, (4)

ζpṗi = (
1 − pip

ᵀ
i

) ·
[
−∂H

∂pi
+ √

2Tpζpξi

]
, (5)

where ζ is the friction coefficient, ζp is the rotational viscosity,
T, Tp are the translational and polarity noise strengths (which
can be distinct in out-of-equilibrium systems), and ηi and
ξi are zero mean and unit variance Gaussian white noises.
The projection operator 1 − pip

ᵀ
i ensures that the magnitude

of pi remains invariant under the dynamics. It is useful to
introduce the Péclet number Pe = v0σ/D, where v0 = Fp/ζ is
the self-propulsion velocity and D = T/ζ is the self-diffusion
coefficient of the ABP. We will also make use of γ = ε/T as
the ratio of the strength of the Lennard-Jones potential to the
thermal fluctuations, and similarly define α, β in units of Tp;
finally, we introduce the normalized relaxation rate μ = τ/ζp

for the polarity, where τ = σ 2/D. Earlier agent-based models
[24,25,28,29,57] that take into account CIL interactions or
comparable position-dependent orientational interactions [58]
can be checked retrospectively to fall within this symmetry
class, even though their specific choice of dynamics cannot
be re-expressed as deriving from a simple pairwise effective
potential. In particular, because in our model cell-cell inter-
actions derive from an effective Hamiltonian, interactions are
reciprocal, as opposed to earlier approaches [58].

The model is thus primarily controlled by (i) the volume
fraction of particles φ, (ii) the competition between self-
propulsion (Pe) and cohesion (γ ), and (iii) the strength of
the symmetric and antisymmetric alignment interaction terms
α, β, and (iv) the relaxation rate μ. Given this relative com-
plexity, an exhaustive exploration of the phase behavior of
this model goes beyond the scope of this paper. Below, we
primarily aim to discuss the effect of the asymmetric coupling
α on the collective particle dynamics, and we restrict our
analysis to regimes that are most relevant to our experimental
cellular system.

IV. DYNAMICS OF SMALL CELL TRAINS

We first focus on the effect of the asymmetric interac-
tion (parametrized by α) on finite-sized cell clusters (or
“trains”), based on our one-dimensional (1D) setup. As shown
in Figs. 2(a) and 2(b) (and Movies S2 and S3), we observe that
cells at the edges of the cell trains generically have opposite

polarities, pointing away from the center of mass of the train;
this is expected from the CIL phenomenology—as reported in
Fig. 1—which favors ←→ configurations. This is evidenced
by the extension of lamellipodia (see Movie S3) and the PBD
gradients [see Fig. 2(b)]. In a given cell train, we generally
observe a single domain wall where the polarity changes signs
(←→). This behavior can be simply accounted for by the
interaction potential Up introduced in Eq. (3). For α > β, as
observed experimentally [see Figs. 1(d) and 1(e)], the po-
tential Up for a 1D train of N particles is minimized for all
configurations with a single domain wall ←→; in particular,
inducing such domain wall in a fully polarized configuration
leads to an energy gain �E = −2(α − β ). There is no energy
cost incurred when the domain wall moves one step to the
left or right in the bulk of the cell train (corresponding to a
polarization flip of a single particle); this suggests that do-
main walls perform symmetric random walks and thus diffuse
within the train. This directly results from the fact that the
asymmetric interaction term in Up reduces to a boundary term,
as is evident from summing the interaction potential over all
particles of a finite 1D train of N particles,

∑
i, j

Up = −β

N−1∑
i=1

pi pi+1 + α(p1 − pN ), (6)

where pi = ±1 in 1D. This shows that edges of cell
clusters induce domain walls because of the CIL inter-
actions. We argue below that these CIL-induced domain
walls have important consequences on the dynamics of cell
trains.

First, Fig. 2(b) shows that domain walls can lead to the
fragmentation of clusters, as expected from the outward
pointing polarity and therefore propulsion force of cells on
each side of the domain wall. Shortly after the separation, we
observe that the cells at the newly formed edges repolarize
away from the center of mass of their respective clusters,
thereby inducing domain walls in the new clusters, confirming
the above scenario of domain-wall nucleation at cluster edges.
This mechanism suggests that even for large cohesive inter-
actions (γ � 1, which would lead in equilibrium to clusters
whose size diverges for T → 0 in 1D), the asymmetric inter-
action can induce fragmentation of large clusters into smaller,
finite-sized clusters in active systems. From force balance, we
infer that only clusters of typical size N � γ /Pe are insensi-
tive to this active fragmentation mechanism. While extensive
statistics of cluster sizes and controlled tuning of Pe and γ

are not accessible experimentally, we have verified that this
scaling correctly predicts the average cluster size in numerical
simulations of the 1D version of the model [see Fig. 2(d)].
Note that, as we discuss below, for increasing values of Pe,
a competing dynamic coarsening mechanism induced by the
self-propulsion of clusters occurs, and the proposed scaling
is insufficient to capture the average cluster size. Finally, this
shows quantitatively that the asymmetric interaction that we
introduced can lead in active systems to a drastic reduction of
cluster sizes, which is finite and critically controlled by Pe.

Second, we now argue that domain walls in finite clusters
control their dynamics and, in particular, their self-propulsion
speed and persistence. Defining the train polarity per cell as
p(t ) = 1

N

∑
i pi(t ), we find from force balance that a train of
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FIG. 2. Dynamics of small trains of cells. (a) Cohesive cell triplet showing antialigned polarities at the edges (arrows denote polarity and
are provided as a guide)—the center cell flips polarity in the middle, slowing down the train. Snapshots are separated by �t = 120 min,
scale bar = 100 µm (see Movie S2). (b) Cell train containing eight cells shown in PBD-YFP fluorescence with repolarization of edge cells after
fracture of the train; cell boundaries have been highlighted for clarity �t = 85 min, scale bar = 100 µm (see Movie S3). In (a) and (b), the stars
represent the location of the domain wall. (c) Examples of ring geometries at confluence (arrows show steady rotation direction for each ring);
rings have diameters D = 100 µm, 200 µm, and 400 µm (scale bar = 200 µm—see Movie S4). (d) Steady-state average cluster size 〈sc〉 as a
function of the Péclet number Pe for various cohesiveness γ = 10 (circles), 20 (squares), and 50 (diamonds) in the regime α � β. Inset shows
that 〈sc〉 ∝ (Pe/γ )−1. (e) Position of cells in two trains for closed boundaries (ring geometry) and open boundaries (line geometry), showing
high persistence in the case of closed boundaries. (f) Experimental velocity autocorrelation for open and closed boundaries. Represented
are mean±STD obtained from the analysis of n = 5 and n = 1 nine-cell trains, respectively, for open and closed boundaries. (g) Velocity
correlation time (measured as the time for which correlation function reaches 1/e) as a function of train size fitted by a quadratic law (red line).
We analyzed data from n = 5, 8, 9, 1, 8, 4, 8, 9, 10, 4, 5, 5, 2, 2, 5 trains for N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and N � 15-cell
trains, respectively, from two independent experiments. See Appendix B for further details about the determination of error bars. (h) Cell train
global polarity autocorrelation function for various train sizes (increasing from blue to yellow: N ∈ [3, 100]) for open boundaries (for cohesive
trains) and closed boundaries (horizontal grey line) averaged over 50 realizations. (i) Correlation time obtained from exponential fits of the
autocorrelation function as a function of cell numbers N ; the red solid line shows the theoretical prediction given by τp ∼ N2.

N cells is expected from the model to be self-propelled with
(dimensionless) velocity p(t )Pe. In turn, considering a train
of N cells with a single domain wall (α � β � 1 regime),
the sign of p(t ) is determined by the relative position of the
domain wall to the train center. Since domain walls diffuse in
the model, we find that, starting from a random position in a
train, a domain wall reaches the train center and thus induces
a velocity sign change with a mean time ∼ N2. We therefore
expect that the polarity or velocity autocorrelation decays with
a characteristic time τp ∼ N2; this is indeed clearly observed
in both experimental data and numerical simulations [see
Figs. 2(g) and 2(i)].

Together, this shows that the CIL-based asymmetric inter-
actions have striking consequences in active systems on size
selection and dynamic properties of finite trains, as suggested
in Refs. [28,29]. In contrast with these previous studies, we
are here able to capture this phenomenology in a minimal
equilibriumlike polarity interaction potential respecting the
symmetry class of CIL-induced cell doublet configurations,
which allows us to derive a formal hydrodynamic description
of the model (see below). We argue that size selection and
dynamic properties of finite trains are direct consequences of

the nucleation of domain walls at the edges of cell trains.
A very simple consequence of this analysis is that clusters
with no edges, for example, for dense confluent systems
in closed periodic geometries, should be completely insen-
sitive to the CIL asymmetric interaction. Strikingly, this is
what we observed both experimentally and numerically when
we analyzed periodic geometries [see Figs. 2(c), 3(a)–3(d),
and Movie S4): for comparable system sizes, the persistence
time was found in periodic geometries with cells at conflu-
ence to be significantly larger (larger than the observation
time) than for trains with edges in open geometries [see
Figs. 2(e) and 2(f)]. Indeed we observed that when the system
reaches confluence, cluster edges disappear, domain walls
vanish, and sustained collective motion arises as predicted
[see Figs. 3(a)–3(d)]. This is consistent with the persistent
collective rotational motion of confluent clusters in ring ge-
ometries, reported in Ref. [17]. In this study, focusing on
closed confluent systems, however, the impact of CIL was
not discussed. In the following, we describe the route to
collective motion in this system and solve the apparent para-
dox between locally prevailing CIL and globally emerging
coherent motion.
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FIG. 3. Cell ordering and clustering in ring geometries. (a)–(d) Example snapshots of systems with increasing number of cells in a ring
geometry with fixed diameter D = 400 µm; nuclei are fluorescently labeled, black arrows show the orientation of the velocity of the associated
cell nucleus. As the number of cells increases (here, from 3 to 28 cells), the system reaches confluence; at confluence, cells coordinate
their polarity and rotate in the same direction (scale bar = 100 µm). (e) A kymograph of the orthoradial velocity vθ (measured by PIV) as a
function of time t and angular position θ shows a transition to persistent rotational motion. The ring diameter is D = 1000 µm and cell number
N = 91. (f) Clustering index dg − dl measured at long times t > 48 h as a function of the number of cells in the ring geometry with diameter
D = 1000 µm (blue circles). The data was binned and interpolated to produce the red line as a visual guide. The system transitions from
a dispersed phase (dg − dl < 0) to a clustered phase (dg − dl > 0) for N∗ ≈ 20, the vertical dashed line corresponds to the number of cells
needed to reach confluence (see SM, Fig. S3 [52]). Data obtained from the analysis of n = 94 ring patterns from three independent experiments.
(g) Steady-state polar order parameter 〈|p|〉 averaged over realizations and time as a function of the number of cells in the ring geometry with
diameter D = 400 µm (error bars are given by standard deviations); the red line shows the expected value of the order parameter for a random
set of N polarities (see Appendix D). Data obtained from the analysis of n = 189 ring patterns from two independent experiments.

V. IMPACT OF ASYMMETRIC INTERACTIONS
ON COLLECTIVE CELL BEHAVIOR

IN CLOSED GEOMETRIES

Building on the previous analysis of finite cell trains, we
now determine the impact of asymmetric interactions on the
collective dynamics of large cell assemblies. Experimentally,
the only control parameter that is adjustable quantitatively
is the cell density, which we tuned in ring geometries by
varying the number of cells and the size of the system [ring di-
ameter, see Figs. 3(a)–3(d) and S3]. Qualitatively, we observe
that an increase in cell density is associated with an increase
of both cell-clustering and coordinated polarization, as ex-
pected. As density increases, cells form larger clusters that
are more persistent, in agreement with our analysis of single
trains above. In Fig. 3(e), we clearly show the establishment
of long-range coordinated motion in a large ring geometry at
high density of cells.

To make this analysis quantitative, we chose not to use the
distribution of cluster sizes because of the limited statistics
that were accessible experimentally for each value N of the
cell number. Instead, to quantify the degree of clustering in the

cell assembly, we defined two phenomenological parameters:
dl measuring the effective distance between an experimental
configuration and a perfect phase-separated state (i.e., a single
cell aggregate) and dg measuring the distance between an
experimental configuration and an ideal Poisson distribution
(i.e., a uniform distribution of nonoverlapping cells) (see de-
tails in the SM and Fig. S2 [52]). From these quantities, we
introduce a clustering index dg − dl which, by construction,
differentiates between dispersed configurations (dg − dl < 0)
and clustered ones (dg − dl > 0). In Fig. 3(f), we show that
this clustering index increases with N and plateaus beyond
a value N significantly lower than Nc where confluence is
reached (Nc ≈ 65 for a ring diameter D = 1000 µm, see also
Fig. S3). This means that due to reduced available space, cells
tend to cluster when the density increases. In turn, as PBD-
YFP fluorescence was not accessible in those experiments, we
identified the polarity of each cell with pi ≡ vi/|vi| (where
vi is the velocity of cell i) in order to assess the average
polarity 〈|p|〉 within a ring. As discussed qualitatively above,
we observe that the steady-state polarity averaged over time
and realizations 〈|p|〉 increases with cell number N , which
is consistent with the reported increase of cluster size with
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FIG. 4. Polar-disordered transition and microphase separation in the microscopic model. (a) Examples of steady-state structures observed
in simulations of the model for various conditions α  β and α � β with μ = 100 or μ = 1. Cluster size statistics as a function of the control
parameters of our model: the relative strength α/β, the self-propulsion magnitude Pe/γ , and the relaxation rate μ—(b), (e) in the (α/β, Pe/γ )
plane for μ = 100; (c), (f) in the (α, Pe/γ ) plane for μ = 2 and β  1; (d), (g) in the (μ, Pe/γ ) plane for α/β � 1. In (g), curves are given
for logarithmically spaced values of μ from 10−1 (green) to 102 (blue). In (b)–(d), we have added as visual guides for the re-entrant clustering
transition a single contour at arbitrary values of 〈sc〉/N (solid black line).

N , and the existence of typically one domain wall per cluster
as reported in Fig. 2; in particular, polarity significantly ex-
ceeds the expected value for a random choice of N polarity
vectors pi, and plateaus for confluent systems with N > Nc

[see Fig. 3(g)]. Hence, we can delineate a route to collective
motion in this dense confluent system: as density increases,
the available space decreases, which leads to larger, less nu-
merous cell clusters; being an edge term, the CIL interaction
becomes less prominent even though it dominates the dynam-
ics of small systems, which allows collective motion to arise.

VI. HYDRODYNAMIC THEORY AND PHASE DIAGRAM

Experiments are limited to rather small cell numbers, finite
time scales and do not allow for the independent tuning of
key control parameters. To explore the effect of asymmetric

interactions on the possible phases in the thermodynamic
limit, we rely on both the hydrodynamic limit of the agent-
based model introduced above and on a numerical analysis of
the 1D version of this model [see Fig. 4(a)].

First, we place ourselves in the case of a high polarity
relaxation rate μ = 100; in this limit, the polarity of the par-
ticles quickly relaxes. Qualitatively, we observe in the limit
where alignment dominates over antialignment the stability of
macroscopic polar drops independently of the self-propulsion
magnitude Pe/γ [see Figs. 4(a)–4(e)]; all cells are moving
coherently as a single drop. The observed behavior sharply
transitions when the strength of the asymmetric term becomes
larger than the strength of the symmetric term. For α � β,
we observe a nonmonotonic evolution of the average cluster
size as a function of self-propulsion magnitude. In the limit
of Pe/γ → 0, we also observe a stable single drop but the
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drop is, in this case, apolar on average. Indeed, in the limit
of fast polarity relaxation μ � 1, as discussed above the
energetically favored configuration contains a single domain
wall that separates groups of particles with outward point-
ing polarities. Over time, the domain wall diffuses in this
cohesive drop. As Pe/γ starts increasing, the average clus-
ter size decreases sharply. In this regime, the self-propulsion
magnitude competes with cohesive forces, leading to what we
call cohesion-induced microphase separation. Eventually, the
self-propulsion magnitude becomes large enough for the small
drops to fully disassemble and a disordered dilute (gaslike)
phase is reached.

Surprisingly, we observe phase reentrance; indeed, as we
increase the self-propulsion magnitude again, we observe that
the typical cluster size in the system increases. We observe
small drops with transient single domain walls now separat-
ing regions of particles with inward pointing polarities. This
second microphase separation is in fact caused by a motil-
ity induced phase separation (MIPS) mechanism. It is thus
expected that the stability of the disordered dispersed (gas)
phase against MIPS clustering is critically controlled by the
persistence time of the cell polarities; as the polarity relaxation
rate μ decreases, particles become more persistent and activ-
ity promotes microphase separation at lower self-propulsion
strength [see Figs. 4(d) and 4(g)].

We now step away from this microscopic picture and
construct a general hydrodynamic theory of asymmetrically
interacting active polar particles in arbitrary dimensions that
encompasses the agent-based model introduced above and is
valid for all models with the same symmetry class [52]. Since
the particles interact with a substrate, momentum is not a con-
served variable; hence, the hydrodynamic fields that we must
retain are the particle density ρ(r, t ), which is a conserved
quantity, and the polarity p. Note that even though the polarity
pi of a single particle is a unit vector, the corresponding
coarse-grained variable p is not. The microscopic interaction
potential H defined in Eq. (1) can be coarse-grained to yield
an effective free-energy in terms of the variables ρ and p [59].
We do not perform this procedure explicitly here and instead
provide a phenomenological expression based on symmetry
arguments. The classical alignment term −βpi · p j in the mi-
croscopic polarity potential Up defined in Eq. (3) generically
yields the usual Landau free energy [60]

Fp =
∫

dr
[

A

2
p2 + B

4
p4 + K

2
(∇p)2

]
, (7)

where all terms, in particular, the parameter A that controls the
isotropic-polar transition, can be functions of the density. Note
that the (∇p)2 term stands for the classical Frank elasticity in
the one constant approximation, which comprises splay and
bend contributions [60].

As stated above, the asymmetric alignment term −α(pi −
p j ) · ni j in Eq. (3) breaks the invariance under independent
rotations of space and polarity, but preserves the required
invariance under joint rotations of space and polarity that
characterizes equilibrium polar liquid crystals. Upon coarse
graining, any asymmetric alignment term with such symmetry
generically yields a coupling between density ρ and space
derivatives of p; to lowest order in these hydrodynamic fields,

we therefore write without loss of generality

Fρp = −
∫

drᾱδρ∇ · p, (8)

where the coefficient ᾱ is proportional to α and δρ is the
deviation of the density from a steady state, spatially homo-
geneous density ρ0 (a free-energy ∝ ρ0∇ · p with a spatially
homogeneous density ρ0 would yield only a boundary term
and is omitted). This is the spontaneous splay term, well-
known in the context of equilibrium polar liquid crystals [61];
in particular, it is apparent from Eq. (8) that for finite particle
clusters of uniform density, Fρp is merely a boundary term,
as we argued on the basis of the agent-based model above.
As we show below, this term has important consequences in
active systems that have remained unexplored so far.

Finally, the coarse-graining of the position-dependent in-
teraction potential Ur yields

Fρ =
∫

dr
[
U (ρ) + κ

2
(∇ρ)2

]
(9)

as in standard equilibrium theories of fluids, where U (ρ) is the
internal energy density and κ is the interface energy constant.
Since we are interested in model-independent properties, we
choose a simple phenomenological form for U (ρ) that accom-
modates a liquid-gas transition near a steady-state density ρ0

controlled by a phenomenological parameter Ac, i.e.,

U (ρ) = Ac

2
(δρ)2 + Bc

4
(δρ)4. (10)

The effect of the asymmetric contribution Fρp to the total
free energy F = Fp + Fρp + Fρ at equilibrium is summarized
in the SM for completeness, and shown to be unimportant for
d = 1, and in the homogeneous disordered phase for d � 2
case that we consider below [52]. We now construct the phe-
nomenological active dynamics of ρ and p. The activity in
the model enters primarily as a coarse-grained self-propulsion
velocity of the polar particles that we assume enslaved to the
polarity v ≡ v0p. The coupled equations for the conserved
particle density and the polarity fields are

∂tρ = −∇ · (v0ρp) + D∇2 δF

δρ
+ �1∇ · δF

δp
, (11)

∂t p = −μ̄
δF

δp
− �2∇ δF

δρ
. (12)

Here D is an effective diffusivity and μ̄ is the polarity re-
laxation rate which is the coarse-grained counter part of the
parameter μ in the agent-based model. We have included phe-
nomenological couplings between p and ρ with coefficients
�1 and �2. The detailed-balance obeying limit is defined by
v0 = 0 and �1 = �2, imposed by Onsager symmetry, and
corresponds to the linear response of a passive system of
interacting polar particles. However, out of equilibrium, there
is no symmetry to enforce this equality. For instance, these
coefficients could be distinct due to microscopic nonrecipro-
cal interactions between polarities [62]. Note that in principle,
Eqs. (11) and (12) also contain nonlinear terms that cannot be
derived from a potential (such as advective and self-advective
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FIG. 5. Phase diagram represented, respectively, in (a) the (ᾱ, v0) plane with μ̄ � 1 (sketch), (b) the (ᾱ, v0) plane with μ̄ ∼ 1, and (c) the
(μ̄, v0) plane with ᾱ � 1. The black solid line in (b) and (c) is the spinodal line associated to Eq. (13), which defines the domain of linear
stability of the homogeneous disordered phase (red region). Here, we assumed that �2(v0) is a decreasing quadratic function of v0 with
�2(v0 = 0) = 0. All three phase diagrams clearly display rerentrance to a clustered phase as the self-propelling velocity v0 is increased.

nonlinear terms). These, however, do not affect the linear anal-
ysis below and are omitted for simplicity. Note, finally, that
while the microscopic model has no nonreciprocal interaction,
unlike the model introduced in Ref. [58], the coarse-grained
equations we obtain are equivalent. In other words, in this
system, microscopic nonreciprocity does not yield any effect
not already accounted for by the combination of generic asym-
metric interaction and motility that we introduce in our model.

We now linearize Eqs. (11) and (12) about a disordered
but homogeneous phase with density ρ0 (hence A > 0). Upon
elimination of the polarity field which relaxes fast, one
obtains [52]

∂tρ =
[
v0ρ0

(
ᾱ

A
+ �2Ac

Aμ̄

)
− �1�2Ac

μ̄
+ AcD

]
∇2ρ. (13)

In equilibrium, i.e., for v0 = 0 and �1 = �2, the diffusivity is
simply renormalized to D − �2

1/μ̄ > 0 and the homogenous
disordered state is linearly stable, as expected, for Ac > 0; the
usual spinodal line of the liquid-gas transition is then simply
given by Ac = 0.

At this stage, it is useful to compare this analysis with
the equation of motion for the density and polarity fields
in Ref. [63]. These latter equations can be recovered in our
formalism by taking �1 = ᾱ = 0 and �2 �= 0. The condi-
tion Ac(D + v0ρ0�2/Aμ̄) < 0 is then equivalent to the MIPS
[47,48] spinodal obtained in Ref. [63], which arises in our
notation when �2Ac < 0, and which is indeed expected to
be present in our system, which has both self-propulsion and
hard-core repulsion. To be consistent with Ref. [63], we there-
fore assume from now on that �1 = 0, and that Ac�2(v0) is a
decreasing function of v0 with �2(v0 = 0) = 0.

With these prescriptions, the spinodal line is explicitly de-
termined by Eq. (13) and defines the domain of linear stability
of the homogeneous disordered phase, which we plot in the
(ᾱ, v0) and (μ̄, v0) planes in Fig. 5. This analysis, however,
does not allow us to fully describe the expected phases beyond
the spinodal lines. Therefore, we make use of the results of
numerical simulations of the 1D version of the agent-based
model to characterize the inhomogeneous phases (see Fig. 4
and Appendix F for details). Confronting Figs. 4 and 5, we
observe that our numerical results qualitatively confirm the
analytical predictions. Both analytical and numerical analysis
show that the asymmetric term ᾱ, when coupled to activity
(v0 �= 0) stabilizes the disordered homogeneous phase, both

with respect to the usual, passive, mean-field transition to liq-
uid induce by cohesive cellular forces (the homogeneous gas
phase can be stabilized even for Ac < 0 when ᾱ is increased)
and with respect to MIPS (whose spinodal can be suppressed
by increasing ᾱ).

Strikingly, starting at equilibrium (v0 = 0) deep in the liq-
uid phase (Ac < 0) induced by cohesive interactions (CI), we
find that for ᾱ > 0, increasing self-propulsion first destabi-
lizes clusters and induces a microphase of finite self-propelled
clusters, which can ultimately lead to a fully dispersed phase.
This is in agreement with the mechanism of cluster frag-
mentation analyzed in Fig. 2(b), and proves its impact at
larger scales. For this mechanism to occur, the asymmetric
interactions have to dominate over the aligning ones (α > β)
for β > 1 or over the thermal fluctuations (α > 1) for β < 1
(where α and β are expressed in units of Tp). In addition
to this fragmentation mechanism, we show in Fig. 3 that
activity increases self-propulsion and persistence of clusters,
which thus behave as mesoscale SPPs with hard-core repul-
sion. Upon increasing activity, a competing MIPS mechanism
of either single particles or clusters favoring aggregation is
therefore expected. Such reentrance into a clustered phase is
indeed predicted by our stability analysis and numerical sim-
ulations (Figs. 4 and 5). This MIPS-induced (MI) clustering
mechanism is expected to be critically controlled by the per-
sistence time of the clusters, which is in turn controlled by the
timescale μ−1 of polarity dynamics, as confirmed by the linear
stability analysis—see the term ρ0v0Ac�2/(Aμ̄) in Eq. (13).
Indeed, we find that for large values of μ, the MIPS phase
is pushed to larger values of v0, thus increasing the stability
domain of the disordered dispersed phase; accordingly, for
low values of μ, the MIPS phase (MI) appears even at low
v0, thereby completely masking the fragmentation mechanism
and preventing the emergence of a microphase (Figs. 4 and 5).

VII. EXTENSION TO TWO-DIMENSIONAL SYSTEMS

Up to now, we have used simple 1D geometries to make a
detailed analysis of the system tractable, both experimentally
and computationally; in our integrative bottom-up approach,
we have done this systematically from the scale of pairs of
cells up to large confluent systems. Yet, due to the generic
nature of the d-dimensional hydrodynamic theory presented
in the previous section, we expect that several of our key
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FIG. 6. Two-dimensional cell clusters.–We analyze examples of experimental and numerical thick ring geometries and finite clusters.
(a) Example of a steady-state configuration in a thick ring geometry (where the thickness of the ring is R = 246 µm); red arrows show the local
velocity in the ring as measured by PIV (scale bar = 100 µm). (b) Steady-state polar order parameter 〈|p|〉 averaged over realizations and time
as a function of the number of cells in thick ring geometries with ring thicknesses, R = 26 µm (blue circles, 82 patterns per experiment), 49 µm
(red squares, 76 patterns per experiment), 124 µm (orange diamonds, 85 patterns per experiment), 246 µm (green lower triangles, 97 patterns per
experiment), and 395 µm (grey upper triangles, 92 patterns per experiment). For each geometry, data was binned by the number of cells. Vertical
error bars are given by standard deviations over the polarization, while horizontal error bars are standard deviations over the number of cells.
Data obtained from the analysis of three independent experiments. (c) Example realizations of small two-dimensional cohesive cell clusters.
Red arrows represent the cell polarity and are estimated by the nucleus-Golgi axis. (d) Polarity of the cells in experimental two-dimensional
cohesive clusters relative to the edge of the cluster as a function of the distance from the edge. We show here the median μ(p · n̂) as blue
symbols, where positive values of p · n̂ denote cells pointing towards the outward normal vector to the edges of the clusters. Error bars are
given by the first and third quartiles. (e) Example realizations of two-dimensional cohesive clusters in the model with α > β showing polarities
at the edge of the cluster pointing along the local outward normal direction. Given boundary conditions, the polarities of the cells inside the
clusters are organized around a single +1-charge nematic defect (aster).

predictions will still be valid in higher physically relevant
dimensions, in particular, for d = 2, 3. To prove this point, we
focus on demonstrating in two-dimensional (2D) cell mono-
layers two of our main predictions characterizing CIL as an
edge term: First, in finite-size clusters, we expect cells close
to the edge to point preferentially along the normal vector to
the edges of the cluster and, second, in a large system with
periodic boundary conditions (i.e., in closed-ring geometries),
large-scale coordinated flow (global polarity) will emerge as
the cell surface coverage approaches full confluency, because
in this regime cell cluster edges are absent and the effect of
CIL thus vanishes.

First, we extend to two spatial dimensions the analysis of
the dynamics of cells in our ring geometries. To do so, we
study annuli whose thicknesses are large compared to a single
cell typical size; an example of such a geometry is given
in Fig. 6(a). This experimental setup allows us to explore
cell dynamics in two dimensions while imposing periodic
boundary conditions, albeit only in the orthoradial direction
whereas the other boundaries impose a tangential flow con-

dition. Note that imposing periodic boundary conditions in all
spatial directions would require us to study the motion of cells
on the surface of a three-dimensional torus which is outside
the realm of this study. In our experiments, we use annuli with
an outer diameter of 1000 µm and five different thicknesses
ranging from 26 µm to ∼395 µm. We observe that at low
density, cells exhibit 2D random walks, while in confluent
rings, a global polar flow emerges in the orthoradial direction.
To quantify the polar order in these systems, we proceed as
done previously and measure the instantaneous ring polarity
p(t ) following Eq. (B4). In Fig. 6(b), we show that, in the
steady state, 〈|p|〉 increases as the number of cells in the
annuli increases (i.e., with increasing cell volume fraction),
and that for all ring thicknesses. This confirms the emergence
of large-scale coordinated motion, i.e., the emergence of coor-
dinated polarity when the system reaches confluency (see SM
Movie S5).

Second, we generate long-lived, cohesive two-dimensional
(2D) clusters. Starting from sparse single cells, we let them
grow until small colonies of up to few hundred cells are
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generated. For d = 2, we found the PBD-YFP signal to be
quite unreliable at accurately predicting the cell polarities.
Instead, we fix cells and fluorescently label the nucleus and
Golgi apparatus [see Fig. 6(c)], as the nucleus-Golgi axis has
been previously shown to quite reliably reflect cell polarity
[64–66]. With this definition in mind, we show in Fig. 6(d)
that the outermost cells significantly polarize outwards at the
edge of the cluster by quantifying the value of p · n̂, where p
denotes the cell polarization vector and n̂ the vector joining
the center of mass of the cell to the closest point on the outer
edge of the cell cluster; positive values of p · n̂ denote cells
pointing towards the outward normal vector to the edges of
the clusters. We show in Fig. 6(e) sample realizations of such
long-lived cohesive clusters in our microscopic numerical
model; we confirm that as long as α > β, the clusters will
show cell polarities at the edge of the cluster pointing along
the local outward normal direction. Because of this boundary
condition imposed by the CIL asymmetric interaction, the
polarities of the cells inside the clusters self-organize around a
single +1-charge nematic defect (aster), which is the expected
ground-state solution of the polarity dynamics when α > β

in 2D. The dynamics of this topological defect thus controls
the dynamics of the overall cluster. Of note, for d = 2, the
motion of this topological defect inside the cohesive cluster is
not free diffusion because of elastic interactions and thus we
expect the dynamics to be different from that of clusters for
d = 1.

Overall, we conclude that key features of the model, ob-
served for d = 1 and predicted by our hydrodynamic theory,
are conserved for 2D cell assemblies: CIL interactions act as
boundary terms only and lead to edge cells pointing outwards
in finite clusters, and to the emergence of coordinated motion
at confluency where cluster edges disappear and CIL effects
become negligible.

VIII. CONCLUSION

Our results illustrate how cell-cell interactions regulate the
collective behavior of cellular systems and their organization.
Based on a joint experimental and theoretical approach, we
analyzed the impact of generic asymmetric interactions remi-
niscent of the CIL interactions reported for various cell types
on the collective dynamics of cell assemblies, and more gener-
ally of dry active systems. We made use of microfabricated 1D
in vitro environments to characterize quantitatively pairwise
cell-cell interactions and showed that the observed CIL-type
phenomenology can be captured by a generic equilibriumlike
asymmetric aligning interaction potential that breaks the usual
invariance under independent rotations of space and polarities.
Based on experimental observations, numerical simulations
and analysis of the relevant active hydrodynamic theory, we
demonstrated that such an asymmetric aligning interaction
can drastically lower the size of cell clusters and control their
self-propulsion speed and persistence. By carefully inspecting
the role of cell density in closed geometry, we added a piece
to the puzzle of persistent coherent motion of cells confined to
a ring: while CIL-like interactions should tend to destroy any
large-scale order, their effect is mitigated by the disappearance
of cluster edges. We have also confirmed our predictions by

studying cell polarity in simple 2D systems, including thick
ring geometries and isolated cellular clusters.

In the large system limit, we found that this can lead
to the emergence of a liquidlike microphase of cell clusters
of finite size and short-lived polarity, and ultimately stabi-
lize a fully dispersed apolar phase. Altogether, this analysis
suggests that CIL-like asymmetric interactions in generic ac-
tive systems—cellular or artificial—can control cluster sizes
and polarity, and can thus prevent large-scale coarsening and
long-ranged polarity, except in the singular regime of dense
confluent systems. While our experimental and numerical
analysis was focused on 1D and 2D geometries, we expect
that several key features, predicted by the generic analysis
of the d-dimensional hydrodynamic theory, are still valid for
d = 3, and therefore relevant to in vivo biological systems. We
anticipate that the mechanism of active cluster fragmentation
induced by the CIL interaction, and the critical dependence of
size, speed, and persistence of cell clusters on the CIL inter-
action may provide a unique mechanism to interpret directed
cell migration during development, epithelial-mesenchymal
transition, and collective cancer cell invasion.
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APPENDIX A: EXPERIMENTAL METHODS

1. Cell culture

We used MDCK wild-type, MDCK histon-GFP, and
MDCK PBD-YFP (a gift from F. Martin-Belmonte lab-
oratory). The cells were cultured in DMEM GlutaMAX
high-glucose (Gibco, Waltham, MA) supplemented with 10%
fœtal bovine serum (BioWest, Nuaillé, France). Prior to ex-
periments, the cells were treated with mitomycin C at final
concentration of 10 µg.mL added in the medium for 1 h,
then rinsed before subsequent detachment and seeding on the
experimental samples.
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2. Sample preparation

All micropatterns were prepared using standard microcon-
tact printing on PDMS, as described in Ref. [44]. The sub-
strates used were (i) nonculture treated plastic dishes (Greiner
Bio-One, Kremsmünster, Austria) for wide-field microscopy
or (ii) glass coverslips (Menzel-Gläser) for spinning-disk mi-
croscopy. The substrates were first covered with a thin layer
of poly-dimethyl-syloxane (PDMS, Sylgard, Dow Corning,
Midland, MI) using a spin-coater and crosslinked at 80 ◦C
for 2 h. PDMS stamps were made by pouring PDMS on a
mold featuring the patterns to be printed and crosslinked as
described. After cooling down, a fibronectin solution was pre-
pared by adding 5 mg.mL−1 of fibronectin and 2.5 mg.mL−1

of Cy3- or Cy5-labelled fibronectin into sterile milliQ water.
The solution was then incubated on the stamps for 40 min
at room temperature. Before stamping, the substrates were
activated using UV-ozone for 10 min; the stamps were rinsed
to remove any excess fibronectin and dried using an air-gun.
The stamps were briefly put in contact with the surface of
the substrate, then removed, and the substrates immerged
in a 2% pluronics F127 (Sigma-Aldrich, Saint Louis, MO)
solution in PBS for 2 h. Finally, the substrates were rinsed
in PBS and sterilized under the UV lamp of a culture hood
before use.

3. Stencils

To be able to track cell trains of definite length over a
long period of time, we prepared isolated trains as follows.
We fabricated PDMS microstencils by cutting a trapezoidal
shape through a thin (approximately 100 µm) layer of PDMS
using a cutting plotter (Graphtec CE6000-40, Graphtec Corp.,
Yokohama, Japan). The stencil was then placed on top of the
linear patterns at a 90◦ angle to leave from a few dozens of
microns up to 400 µm of uncovered space at the middle of
each line. The stencil was removed after the standard cell
seeding, attachment, and rinsing steps, so as to let the trains
move freely without future encounters.

4. Cell seeding

The cells were enzymatically detached, then concentrated
using a centrifuge and seeded on the substrates in culture
medium, at a controlled density: medium-low density for the
doublet and random small trains experiments, very high den-
sity for the stencil experiments, a wide range of densities for
the ring experiments. The cells were let to adhere in the incu-
bator for approximately 45 min, then rinsed thoroughly (but
carefully) to remove excess floating cells without affecting
adhered cells.

5. Time-lapse microscopy

All experiments were run at 37 ◦C in 5% CO2. The ex-
periments in Figs. 1 and 2(b) were done using an inverted
microscope (Leica, Wetzlar, Germany) with a CSU-W1 con-
focal spinning-disk module (Nikon, Tokyo, Japan) and a
40X oil-immersion objective. The acquisition was done using
Metamorph (Molecular Devices, San Jose, CA), at a 6- to
10-min. acquisition rate. The focus was done on the basal

plane of the cells and the microscope’s hardware autofocus
was used to ensure the absence of defocusing.

All the other experiments were performed with a wide-field
inverted microscope (Olympus, Tokyo, Japan) using a 10X air
objective. Phase contrast and green fluorescent protein (GFP)
fluorescence images were acquired using Metamorph (Molec-
ular Devices, San Jose, CA), at a 6- to 12-min. acquisition
rate. An image of the labeled patterns was done at least at the
beginning of the experiment to allow further alignment.

6. Cell colony preparation and immunostaining

To prepare 2D cell colonies, cells were seeded at very
low density on glass coverslips and let to divide for four
days to yield on average 100 cells per colony. At this point,
the cells were fixed with 4% paraformaldehyde for 20 min.
The cells were then immuno-stained using classic procedure:
after rinsing in PBS, the cells were treated 10 min in 0.5%
Triton X100, then rinsed and incubated in 10% FBS, 1%
BSA for 1 h. After that, they were incubated with primary
antibodies overnight with 1% FBS and 1% BSA at 4 ◦C. The
next day, primary antibodies were rinsed; they were further
incubated with secondary antibodies, together with Hoechst
33342 and Phalloidin for 2 h at room temperature. Finally, the
samples were rinsed and mounted in Prolong before imaging.
The antibodies used were anti-GM130 to mark the Golgi.
The colonies were then imaged on a wide-field fluorescence
microscope at 20x magnification with a 2 x 2 binning of the
pictures.

APPENDIX B: IMAGE ANALYSIS

1. Analysis of isolated trains

The line patterns were first detected using an in-house
macro allowing either automatic thresholding or semiauto-
matic drawing. After rotation and stitching of the images
using in-house macros, the phase contrast images were bi-
narized using a simple thresholding approach with adapted
smoothing, dilatation-erosion steps and filters on both the size
and circularity of the detected objects. This way, the pixels
occupied by cohesive trains could be detected. The GFP pic-
tures were then treated using Imaris (Belfast, UK) to get the
trajectories of single nuclei, with a manual correction step
allowing to get experiment-long clean trajectories. Further
analysis used a combination of those two data sets: tracked
position of the single nuclei and position and extension of
cohesive trains.

2. Analysis of ring geometries

The analysis of ring experiments followed the same spirit
but with slightly different procedures. The detection of the
rings was done using in-house macros performing template
matching; the images were then cropped to get single rings of
all given diameters in different movies. The train detection
was done as previously, but the nuclei detection relied on
an in-house macro based on the Find Maxima function of
ImageJ [38], and subsequent tracking was done using the
track.m function in MATLAB [67]. This procedure induced—
low rate—random errors in the trajectories but allowed much
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larger outputs in terms of number of cells analyzed. All
quantities, in particular, the velocities, were projected on the
orthoradial direction to get a 1D data set. In parallel, we per-
formed particle-image velocimetry (PIV) using MatPIV [68]
on the phase-contrast images. The velocity field, we obtained,
was similarly projected onto the orthoradial direction, and the
signal was filtered using the trains location data to remove
spurious velocities outside of the areas covered by cells [see
Fig. 3(e)]. We thus obtained the cell velocities from two
independent protocols: a discrete Langrangian method and a
continuous Eulerian method.

3. Velocity autocorrelation functions

In both isolated trains and rings, the velocity autocorrela-
tion functions were computed in direct space for each cell i as
follows:

Ci(�t ) = 〈vi(t ) · vi(t + �t )〉t . (B1)

The autocorrelation function Ci was then normalized to
obtain ci(�t ) = Ci(�t )/Ci(0) and for each cell number N , the
average cavg(�t ) was taken over all cells belonging to a train
of (initially) N cells. The persistence time τv was defined as
the first �t this average function decayed below e−1. The error
in τv was obtained by applying the same threshold detection
to the functions cavg ± csem where cavg and csem are, respec-
tively, the average and standard error of the mean of ci for a
given N .

4. Polar order parameter

The polar order parameter was computed on single rings
with two different definitions based on the two available ve-
locity data sets. When using individual cell tracking data, we
computed the polar order parameter as follows:

ptracking(t ) =
∑N

i=1 vi(t )∑N
i=1 |vi(t )| , (B2)

where vi(t ) denotes the velocity of cell i at time t in a ring of
N cells. When using the velocity field obtained via PIV, we
defined the polar order parameter as

pPIV(t ) =
∑

i∈T(t ) ṽi(t )∑
i∈T(t ) |ṽi(t )| , (B3)

where ṽi(t ) denotes the velocity measured on a coarse-grained
“pixel” i at time t and T(t ) is the ensemble of pixels covered
by cells at time t . We checked that those two definitions
were consistent. In what follows, we mostly used 〈|p|〉PIV—
while checking again that the subsequent results were not
affected by the definition of 〈|p|〉, where 〈· · · 〉 denotes an
average over configurations. To plot the steady-state values
of 〈|p|〉 against N , we waited for t � 30 h for the system to
stabilize and reach stationarity. We then averaged the 〈|p|〉
value for all t � 30 h in individual rings, then binned the
data obtained over number of cells N (using six bins). We
then computed both average and standard deviation over
these bins, as shown in Fig. 3(g) for rings of diameter
D = 400 µm.

For thick annuli experiments, we used a similar definition
for the polar order parameter, namely,

p(t ) =
∑

i∈T(t ) ṽ
θ
i (t )∑

i∈T(t ) |ṽi(t )| , (B4)

where ṽi(t ) and ṽθ
i (t ) are, respectively, the velocity vector and

its orthoradial component measured on coarse-grained pixel
i at time t and T(t ) is the ensemble of pixels covered by the
cells at time t .

5. Cell polarity in 2D clusters

The nucleus-Golgi axis was used to estimate the direc-
tion of cell polarity in immunolabelled 2D clusters. First, the
positions of the nuclei and the Golgi bodies were detected
using an in-house ImageJ macro based on the Find Maxima
function that locates local maxima in the image. Then, nuclei
and Golgi bodies were paired using a squared-distance min-
imization algorithm [67] and the nucleus-Golgi vector was
used to determine the orientation of cell polarity. The colonies
were segmented based on the phalloidin (actin) signal, so
as to define cell colony edge and center. Then, the polariza-
tion parameter is simply p · n̂ = cos(θ − φ), where φ is the
orientation of cell polarity p while θ is the orientation cell-to-
nearest-colony-edge vector n̂. The midpoint between nucleus
and Golgi was used to define the cell position to remove any
potential bias in defining θ . Hence, p · n̂ = 1 if the cell points
to the colony edge (or away from the colony center), while
p · n̂ = −1 if it points to the colony center (or away from
the edge).

APPENDIX C: RELATIVE STRENGTH
OF THE ALIGNMENT INTERACTIONS

The evolution of the polarities is governed by an equilib-
rium process. From the measure of the probabilities for each
polarity doublet configuration [see Fig. 1(e)], we can estimate
the value of the relative strength of the alignment interactions
as follows. We denote the four possible configurations of po-
larity doublets: A(→→), B(←←), C(←→), and D(→←).
The respective probabilities of these configurations are given
by

pA = eβ

Z
, pB = eβ

Z
, pC = e2α−β

Z
, pD = e−2α−β

Z
, (C1)

where α and β are expressed in units of the polarity tempera-
ture and Z is the partition function. As we do not have access
to the partition function, we take ratios of these probabilities
to obtain the following final expressions:

α = 1
4 log(pC/pD), (C2)

β = α + 1
2 log(pA/pC ). (C3)

We obtain α ≈ 0.44 and β ≈ 0.22, i.e., α/β ≈ 2.

APPENDIX D: POLAR ORDER PARAMETER
FOR RANDOM CONFIGURATIONS

To compute the value of the polar order parameter expected
for random configurations [see Fig. 3(g)], we consider a set
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of N cells of which n+ have a positive polarity and n− have
a negative polarity. The global polarization of the system is
given by

p(n+, n−) = n+ − n−
N

. (D1)

As N = n+ + n−, we can characterize the polarization using
solely the number of negative polarities, which we denote n
and write

pn = N − 2n

N
. (D2)

If we consider that each cell polarity is assigned randomly, we
can write that

〈|pN |〉 =
N∑

n=0

an|pn|, (D3)

where an is the probability to randomly pick n cells (those
with negative polarities) out of the N cells given by the
binomial coefficient:

an = 1

2N

(
N

n

)
. (D4)

This leads to

〈|pN |〉 = 2

2N N

(
N

1 + �N/2�
)[

1 +
⌊

N

2

⌋]
. (D5)

APPENDIX E: NONDIMENSIONALIZATION
OF THE MICROSCOPIC MODEL

In 1D, we nondimensionalize the Langevin equations de-
scribing our microscopic model [see Eqs. (4) and (5)] using
σ (the particle size) and ε (the Lennard-Jones energy scale)
as basic units of length and energy and as unit of time τ =
σ 2/D, where D = T/ζ is the self-diffusion coefficient of the
ABP. To do so, we introduce the self-propulsion velocity
v0 = DFp/T = Fp/ζ . We can thus define the nondimensional
Péclet number Pe = v0τ/σ = v0σ/D which measures the ra-
tio between the strength of the self-propulsion and thermal
fluctuations,

ṙi = γ Fi + Pe pi +
√

2ηi, (E1)

where we defined γ = ε/T as the ratio of the strength of the
Lennard-Jones potential to the thermal fluctuations and Fi as
the total nondimensionalized truncated Lennard-Jones force
on particle i.

We consider the polarities to be in contact with a heat
reservoir temperature Tp; the dynamics of the polarities is
thus governed by flips between the values p = +1 and p =
−1 with a given rate per unit of time μ [69]. Here, we
use the single spin-flip kinetic Ising model (also known as
Glauber dynamics). This model is defined in terms of a
Markovian master equation for the probability distribution

P(p1, · · · , pN , t ), where pi ∈ {−1,+1},
d

dt
P(p1, · · · , pN , t )

= −
∑

i

w(pi → −pi )P(p1, · · · , pi, · · · , pN , t )

+
∑

i

w(−pi → pi )P(p1, · · · ,−pi, · · · , pN , t ), (E2)

where the transition rates w are proportional to μ. The transi-
tions rates satisfy the detailed balance condition

P0(p1, · · · ,−pi, · · · , pN )

P0(p1, · · · , pi, · · · , pN )
= w(pi → −pi )

w(−pi → pi )
, (E3)

where the equilibrium distribution P0(p1, · · · , pN ) =
(1/Z ) exp(−Up/Tp) with Tp the polarity temperature, Z is the
partition function, and Up the polarity-polarity interactions
which are governed by the following Hamiltonian:

Up =
{−βpi · p j − α(pi − p j ) · ni j ri j � rc

0 ri j > rc,
(E4)

where ni j = ri j/|ri j |. We can nondimensionalize this Hamilto-
nian by expressing the symmetric alignment β and asymmet-
ric alignment α interaction strengths in units of the polarity
temperature Tp (where, in general, Tp �= T ). To nondimension-
alize the equations governing the polarity dynamics in a way
that is consistent with the basic units we detailed above, we
express the polarity flipping rate μ in units of the diffusion
timescale τ . The parameter μ is thus a nondimensional num-
ber representing the ratio of the spatial diffusion timescale to
the average polarity lifetime. In the limit where μ � 1, parti-
cles will attempt to flip their polarities a large number of times
in the time they require to diffuse by a distance corresponding
to their size. Conversely, the limit where μ  1 corresponds
to the limit of very persistent polarities.

APPENDIX F: NUMERICAL METHODS

In 1D, our simulations employed simultaneously: (i) the
stochastic Runge-Kutta method [70] to solve Eq. (E1) and
(ii) the Glauber algorithm to solve the dynamics of the po-
larities [69]. In all simulations, we use periodic boundary
conditions and initial conditions are chosen so the particles
form a single drop with randomly chosen polarities, pi = ±1.
The maximum time step used is δt = 0.5 × 10−5 and we run
simulations for 200τ .

In our implementation of spin-flip dynamics, each particle
is endowed with an internal clock. The lifetime of a given
polarity is drawn from an exponential distribution with pa-
rameter μ. At each time step of the simulation, we start by
updating the polarities before moving the particles. To do so,
we decrease the clocks of all particles by δt , list (in order) the
particles whose clocks have timed out, and update them as fol-
lows: we first calculate the energy difference �E (in units of
the temperature) resulting from the flipping of the polarity of
the particle and the transition probability Pt = 1/(1 + e�E );
we accept the flip if X < Pt where X is a uniformly distributed
random number between 0 and 1. We then draw from the
exponential distribution a new lifetime for the polarity of the
particle.
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