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Active jamming at criticality
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Jamming is ubiquitous in disordered systems, but the critical behavior of jammed solids subjected to active
forces or thermal fluctuations remains elusive. In particular, while passive athermal jamming remains mean-field-
like in two and three dimensions, diverse active matter systems exhibit anomalous scaling behavior in all physical
dimensions. It is therefore natural to ask whether activity leads to anomalous scaling in jammed systems. Here,
we use numerical and analytical methods to study systems of active, soft, frictionless spheres in two dimensions,
and elucidate the universal scaling behavior that relates the excess coordination, active forces or temperature, and
pressure close to the athermal jammed point. We show that active forces and thermal effects around the critical
jammed state can again be captured by a mean-field picture, thus highlighting the distinct and crucial role of
amorphous structure in active matter systems.
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Introduction. Disordered particulate systems are ubiq-
uitous, from molecular glasses, colloidal suspensions, and
foams to biological tissues and granular materials. Models of
jammed solids have thus naturally attracted intense attention
from both theorists and experimentalists alike [1–26]. It is by
now well established that upon increasing its density, a system
of athermal soft frictionless spheres generically develops a
yield stress under which the solid responds elastically [4–12].
This jamming transition, known as “point J ,” is characterized
by a critical packing fraction φc, at which the jammed solids
is marginally stable [1,4,6] and displays an isostatic contact
network [6].

Intriguingly, the mechanical properties of jammed systems
exhibit critical scaling close to point J [27–29], and the cor-
responding upper critical dimension, du, is believed to be
2 [4,27,30–34]. Importantly, this has enabled researchers to
successfully use mean-field theory to elucidate certain criti-
cal behavior of jamming for physically relevant dimensions
(d = 2, 3).

Like jamming, active matter has received much attention
over the past two decades [35–50]. Besides proving to be a
fertile ground for novel physics, active matter offers quanti-
tative descriptions of complex biological processes such as
the dynamics of cellular tissues in health and diseases or
embryogenesis [26,51–61]. In contrast to athermal jamming,
mean-field theory seems to always break down in all physical
dimensions in diverse active systems at criticality and in the
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symmetry-broken phases [62–69]. Therefore, it is natural to
ask whether adding activity to static jammed packings would
alter the mean-field picture that governs its critical behavior.

While jamming under activity has recently been explored,
existing works focus on the glassy regime away from the
critical point [70–79], such as aging dynamics in active
glasses [80–84] and connections between dense active sys-
tems and sheared athermal passive jammed solids [85–89],
mirroring the earlier effort to recast shear induced fluctua-
tion into an effective temperature in passive jammed systems
[13,90–92]. This is surprising since jamming has long been
viewed as an end point of the glassy phase [2,4,93]. While
recent studies have clarified the important differences be-
tween jamming and glass transitions for passive systems
[11,34,93–96], this has however not been done for active
systems.

Interestingly, systems of active Brownian particles (ABP)
at high density have been shown to jam intermittently and
that the lifetimes of these transiently jammed states lengthens
with the persistence of the particles [97]. Since the lifetimes
of these transient jammed states can be arbitrarily long, they
are clearly experimentally relevant. However, the associated
scaling behavior remains unexplored. In this Letter, we fill this
void by elucidating the scaling behavior of these transiently
jammed states under both activity and thermal fluctuations
around the static critical jamming point.

Scaling ansatz. As passive and athermal jamming is a
critical phenomenon for which the critical point is exactly
at isostaticity (i.e., the average coordination z is ziso = 2d),
analysis based on scaling ansatz provides scaling relations
among diverse physical observables [27]. Here, we also start
by formulating a scaling ansatz incorporating the effects of
active forces in the athermal jamming scenario. Specifically,
we consider a generic system of soft frictionless spherical par-
ticles above jamming onset, i.e., with pressure p > 0. Here,
we assume that the particles interact via a purely repulsive
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spring potential

U (ri j ) = ε

α

(
1 − ri j

σi j

)α

�(σi j − ri j ), (1)

where ri j = |ri − r j | is the distance between particles i and
j, σi j = (σi + σ j )/2 and �(x) is the Heaviside function. In
the absence of active forces, the following scaling relation
between �z ≡ z − ziso and p is well established [6,27]:

�z ∼ p1/[2(α−1)], (2)

which, following small corrections to scaling as expected in
the upper critical dimension, leads to �z ∼ p1/1.88 for 2D
systems with harmonic interactions (α = 2) [27].

We now imagine that the particles can exert a persistent
active force f in a randomly chosen direction. Since prior
work has demonstrated that active forces have the generic
effects of unjamming a system, we anticipate that �z should
decrease with f . We also expect the system to revert back to
the same inherent structure when active forces are removed
as long as �z remains positive. In other words, we expect the
system to only explore locally its potential energy landscape
and to remain in the basin of attraction of its initial static
configuration which is justified by the results of Ref. [97] and
our own simulations.

Around this critical region where �z, p, and f are all
small, we expect the system to be scale-invariant with a single
lengthscale controlled by one of the control parameter [98];
we choose our control parameter to be p since it is the physical
quantity that we actually control in most simulation studies.
As such, we write the following scaling ansatz:

�z = p1/[2(α−1)]S( f /pχ ) , (3)

where S is a universal scaling function such that limx→0 S(x)
is a positive constant to recover the static scaling relation
between �z and p (2).

Importantly, we anticipate that the scaling function S(x) is
monotonically decreasing w.r.t. x, and eventually becomes 0
at xc. In other words, at a critical force fc such that

fc = xc pχ , (4)

�z is exactly zero in the system. We now test this scaling
ansatz via means of numerical simulations.

Model and simulations. We study the dynamics of two-
dimensional jammed packings of N spheres interacting via
purely repulsive forces when subjected to active forces and
thermal fluctuations. Our numerical simulations focus on the
case of harmonic interactions [α = 2 in Eq. (1)]. We create
static jammed packings at fixed pressures p to control the
packings distance to the athermal jamming transition point.
To do so, we start with random configurations of discs at high
volume fraction (φ = 0.95) in a square box of size L with
periodic boundary conditions. We then follow the fast inertial
relaxation engine (FIRE) energy minimization procedure until
the maximum unbalanced force on any particle is less than
ft = 10−14. Following each energy minimization, we either
increase (if the pressure is below target) or decrease (if the
pressure if above target) the diameter of the particles pro-
ceeding to a bisection until we obtain a mechanically stable
configuration within 1% of the target pressure p. To avoid

crystallization, we work with 50 : 50 binary mixtures of parti-
cles with diameter ratio 1 : 1.4 as is typically done in studies
of disordered solids [6,8].

These mechanically stable configurations form the initial
conditions of our dynamical simulations. In what follows, we
subject our jammed packings to three different perturbations:

(i) Persistent active forces using an ABP model in which
the positions of the particles are governed by an overdamped
Langevin equation of the form

ṙi = 1

ζ

⎡
⎣−

N∑
j=1

∇iU (ri j ) + f êi

⎤
⎦, (5a)

θ̇i =
√

2Drξi, (5b)

where êi = (sin θi, cos θi ) is the direction of self-propulsion,
f the strength of active force and ζ a friction coefficient.
The dynamics of the self-propulsion direction is governed by
rotational diffusion with coefficient Dr and ξi is a noise term
defined below.

(ii) Thermal fluctuations via Brownian dynamics in which
the positions of the particles are governed by an overdamped
Langevin equation of the form

ṙi = 1

ζ

⎡
⎣−

N∑
j=1

∇iU (ri j )

⎤
⎦ +

√
2Dηi, (6)

where the translational diffusion coefficient D and the friction
coefficient ζ set the temperature T via the Stokes-Einstein
relation and ηi is a noise term defined below.

(iii) Persistent active forces using an AOUP model which
bridge the gap between our active Brownian particles simula-
tions and our passive Brownian dynamics. Here, the positions
of the particles are governed by

ṙi = 1

ζ

⎡
⎣−

N∑
j=1

∇iU (ri j ) + fi

⎤
⎦, (7)

where fi denotes the active forces. While ABPs are subject
to active forces with constant amplitudes and diffusing direc-
tions, AOUPs are subject to varying amplitude active forces
which are governed by

τa ḟi = −fi +
√

2Daψi. (8)

Here, τa is the persistence time of the active forces, Da a dif-
fusion constant, and ψi is a noise term defined below. We fix
the diffusion coefficient Da and vary τa to change the strength
of active force, defined in the AOUP model as f = √

2Da/τa.
Finally, ηi, ξi, and ψi are all zero-mean, unit variance

Gaussian random variables such that

〈ηi,α (t )〉 = 0, 〈ηi,α (t )η j,β (t ′)〉 = δi, jδα,βδ(t − t ′), (9a)

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = δi, jδ(t − t ′), (9b)

〈ψi,α (t )〉 = 0, 〈ψi,α (t )ψ j,β (t ′)〉 = δi, jδα,βδ(t − t ′), (9c)

with (i, j) ∈ [1, N] and (α, β ) ∈ {x, y}.
We nondimensionalize the equations of motion using the

smaller particle diameter σ and potential energy ε as basic
units of length and energy. In ABP simulations, the typical
timescale is given by the persistence time τp = D−1

r , similarly
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FIG. 1. Scaling of the critical active force ( fc) vs pressure (p).
We define fc as the active force at which an initially overjammed sys-
tem (with pressure p) becomes isostatic. The scaling behavior found
for ABPs for various system sizes N ∈ [128, 4096] is consistent with
a power-law scaling with exponent χ = 3/2 (solid black line).

in AOUP simulations where the persistence time is τa, while
in Brownian dynamics simulations, a more natural choice for
the timescale is given by τ = σ 2/D. In all simulations, we
set σ = 1, ε = 1, and ζ = 1. Further, the rotational diffusion
coefficient Dr is taken to be 10−2 unless stated otherwise. To
discard any potential finite size effect in our results, we varied
the number of particles in the system from N = 128 to N =
4096. The target pressures of the initial configurations were
taken in the range [10−7, 10−1]. Finally, results are averages
over 100 independent realizations.

To estimate χ using Eq. (4), we start with static pack-
ings above jamming onset with different pressure values p
in the absence of active forces; then increasing the active
force strength, we find the critical value of the active force
for which the time-averaged excess coordination �z becomes
zero. Figure 1 shows that

χ = 1.5 ± 0.1. (10)

We now present a heuristic argument to justify the value of χ

obtained numerically.
Heuristic argument for estimating χ . As unjamming is

generically controlled by the excess coordination �z under
active forcing, we expect the critical active force to be dictated
by the statistics of interparticle contacts in the overjammed
static configurations. The scaling behavior of the distribution
of interparticle gaps h has been studied both analytically
and numerically [31,34,99–102]. Specifically, we have in the
vicinity of the athermal jamming point

P(h) ∼ h−γ . (11)

In our soft sphere simulations, we obtain γ = 0.42 ± 0.04
[103] which is close to the value of γ∞ = 0.41269... pre-
dicted in the infinite-dimensional mean-field theory of the
hard sphere glass transition [101,104,105]. In our model of
soft spheres, the gap distribution shows a weak dependence on
the pressure, which we neglect here as it does not affect our
argument (within the precision of our numerical estimate).

We now assume that the gap distribution remains the
same at small enough pressures p and active forces f . As

FIG. 2. Schematics illustrating our heuristic analytical argument.
(a) Particle configuration at critical jamming under no active force.
The gap distribution between nontouching neighbors follows the
scaling law in Eq. (11). (b) Upon further compression (or particles’
expansion), the pressure p becomes positive and new contacts are
formed as gaps close. The new particles’ profiles are shown in
solid lines whereas the pre-compressed profiles are in dashed lines.
(c) When active forces are switched on ( f > 0), contacts can be
broken again as the active force (blue arrow) of the red particle can
counteract the steric interactions with its neighbors.

p increases in the absence of active forces, gaps close and
new contacts form (Fig. 2). This increase in new contacts is
given by

�z ∼
∫ δ

0
h−γ dh ∼ δ1−γ , (12)

where δ is the average overlap. For our harmonic soft spheres
simulations, δ is known to scale like p in the overjammed
regime [101], we thus conclude that �z ∼ p0.58, a scaling
exponent already in good agreement with Eq. (2). For more
general interaction potentials (1), we expect the pressure to
scale as p ∼ δα−1.

If each particle is subject to an active force f , the average
force needed to eliminate all newly formed contacts and thus
bring the system back to isostaticity is

fc ∼
∫ δ

0
hP(h)dh ∼ δ2−γ ∼ p(2−γ )/(α−1), (13)

where the upper-bound δ again corresponds to the elimination
of N�z contacts. For our harmonic soft spheres, we obtain
that fc ∼ p1.58. This heuristic argument thus supports the
value of χ (10) obtained from simulation.

Universal scaling function S. This new scaling allows us
to elucidate the form of the universal scaling function S nu-
merically. As presented in Fig. 3(a) and Ref. [103], S(x) is
monotonically decreasing with f for all pressures. Provided
the scaling behaviors given in Eqs. (2) and (4), we attempt to
collapse our data to obtain S(x). In particular, we can scale the
curves in the low activity regime as the excess coordination
scales as p ∼ �z1.88. Further, using the scaling of the critical
active force with pressure, we obtain a good collapse of �z as
a function of f for all pressures [Fig. 3(a)]. This data collapse
supports the existence of scaling relations and of universal
behavior in the vicinity of the jamming point (low enough
pressures).

Before going further, we need to discuss the conditions
under which measuring the critical active force fc is mean-
ingful. In using Eq. (4) to obtain the scaling exponent χ , we
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FIG. 3. Universal scaling function S(x). (a) Collapsed data for
excess number of contacts per particle (�z) as a function of the active
force f at various pressure values for N = 2048. A good collapse is
obtained via a rescaling of �z by pβ (with β = 1.88 for d = 2, see
Ref. [27]) and f by pχ with χ = 3/2. (b) Evolution of the excess
coordination number �z near the critical active force for various
values of pressure for N = 2048. The black solid line shows a linear
scaling.

focused on the vanishing point of S (i.e., the point where
�z = 0). However, as �z becomes negative (i.e., below iso-
staticity), the system loses rigidity and so our scaling ansatz
cannot be correct in this regime. In other words, it is unclear
whether S remains continuous as it vanishes. Fortunately, left
continuity of S—which corresponds to dS(x)/dx|x=x−

c
being

well-defined—is all that is required for the above argument to
work.

In general, this condition implies the following scaling
relation for f close to fc:

�z

p1/[2(α−1)]
∼ A ×

(
fc − f

pχ

)
, (14)

where A ≡ −dS(x)/dx|x=xc,− is a positive constant. In the
case of our 2D systems of harmonic soft spheres, we expect
the following scaling relation �z/p1/1.88 ∼ A × ( fc − f )/pχ ,
again the value of 1.88 is due to small corrections in the upper
critical dimension [27]. Figure 3(b) shows that this scaling
relation is indeed satisfied; this implies the left-continuity of
S at the vanishing point, justifying our procedure to determine
χ (Fig. 1).
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FIG. 4. Effect of persistence and thermal fluctuations. (a) Criti-
cal active force as a function of pressure for various values of the
rotational diffusion constant Dr in simulations of N = 512 active
Brownian particles (ABP). The solid black line shows a power
law scaling with exponent χ = 3/2. For lower values of Dr , the
self-propulsive forces become more persistent and the regime of
validity of our power-law scaling is limited to lower values of the
pressure. (b) Comparison of critical forcing for three perturbation
protocols for systems of size N = 2048: (i) persistent active forces
with constant magnitude but diffusive direction in active Brownian
particles simulations (ABP), (ii) thermal fluctuations in Brownian
dynamics simulations (BD), and (iii) persistent active forces with
fluctuating magnitude and direction in active Ornstein-Uhlenbeck
particles simulations (AOUP). The critical forcing follows in all three
cases the same scaling behavior as a function of p close to the passive
athermal jamming point (p → 0). The solid black line shows a power
law scaling with exponent χ = 3/2.

Scaling behavior and persistence. Studies of athermal
jammed packings define jammed configuration as having a
positive excess coordination. With active forcing, we chose
to extend this criterion and define jammed systems as systems
whose steady-state time-averaged excess coordination is pos-
itive. As our packings coordination may fall below isostaticity
transiently, they may transiently unjam before rejamming.
To analyze this, we studied (i) distributions of Debye-Waller
factors, (ii) mean-square displacements, and (iii) intermediate
scattering functions in packings under active forces. Strik-
ingly, all quantities display signatures of the critical transition
at f = fc and show that structural rearrangements are rare
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even on timescales which are long compared to the active
force persistence time τp = D−1

r [79,103].
After focusing on the long persistence time regime, we

study the robustness of the scaling regime as the persistence
of the active forcing decreases. Figure 4(a) shows that the
scaling behavior persists even as the persistence time goes
down by two orders of magnitude. Interestingly, we observe
that as τp decreases, the regime of validity of the critical force
scaling shifts towards larger pressure values (as evidenced by
the shoulders developing in the high p limit), while scaling (4)
remains intact in the vicinity of the jamming point.

Active forcing versus thermal fluctuations. As we have seen
that the scaling regime remains robust even for very small
persistence lengths, we extend our analysis to the situation
where jammed packings are subjected to thermal fluctuations
(zero persistence time limit) and ask the question of whether
the same scaling can be measured robustly in this case. Al-
though a jammed system will inevitably melt under thermal
fluctuations in the long-time limit, we will test the robustness
of the scaling regime in the intermediate time regime (under
the same simulation and measurement protocols used so far).

To study thermal fluctuations, we follow dynamically the
network of contacts in Brownian dynamics simulations. We
identify the critical temperature Tc at which the time-averaged
excess coordination �z vanishes. To compare directly the
effects of thermal fluctuations and active forces, we define
our critical forcing as fc,2 = √

2Tc. Strikingly, Fig. 4(b)
shows that the critical thermal forcing fc,2 follows the same

power-law scaling with pressure as its active counterpart
(here, in systems with N = 2048 particles; see Ref. [103] for
a system size analysis). Finally, we also verify that we obtain
the same scaling for AOUPs for which we define the critical
force as fc,3 = √

2Da/τa, where τa is the persistence time of
the active force magnitude. We thus conclude to the existence
of dynamically jammed states even at finite forcing whose
scaling behavior is independent of the driving mechanism in
the vicinity of point J .

Summary and outlook. In summary, we have studied the
effects of active forces and thermal fluctuations on long-lived
jammed states of soft frictionless particles in two dimen-
sions close to the critical athermal jamming point. Using
numerical simulations supplemented by a heuristic analyti-
cal argument, we elucidated the universal scaling relations
between the excess coordination, the active force (or temper-
ature), and pressure. In particular, the heuristic, mean-field
based argument that we used to support the scaling ex-
ponent suggests that the mean-field picture applicable to
athermal jamming continues to hold. This is in surprising
contrast to diverse active matter systems in which anomalous
scaling behavior is the norm. An interesting future direc-
tion would be to seek the existence of diverging length- or
timescales.
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