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Abstract
The Ornstein–Uhlenbeck (OU) process describes the dynamics of Brownian particles in a confining
harmonic potential, thereby constituting the paradigmatic model of overdamped, mean-reverting
Langevin dynamics. Despite its widespread applicability, this model falls short when describing
physical systems where the confining potential is itself subjected to stochastic fluctuations.
However, such stochastic fluctuations generically emerge in numerous situations, including in the
context of colloidal manipulation by optical tweezers, leading to inherently out-of-equilibrium
trapped dynamics. To explore the consequences of stochasticity at this level, we introduce a natural
extension of the OU process, in which the stiffness of the harmonic potential is itself subjected to
OU-like fluctuations. We call this model the OU2 process. We examine its statistical, dynamic, and
thermodynamic properties through a combination of analytical and numerical methods.
Importantly, we show that the probability density for the particle position presents power-law tails,
in contrast to the Gaussian decay of the standard OU process. In turn, this causes the trapping
behavior, extreme value statistics, first passage statistics, and entropy production of the OU2

process to differ qualitatively from their standard OU counterpart. Due to the wide applicability of
the standard OU process and of the proposed OU2 generalisation, our study sheds light on the
peculiar properties of stochastic dynamics in random potentials and lays the foundation for the
refined analysis of the dynamics and thermodynamics of numerous experimental systems.

1. Introduction

The Ornstein–Uhlenbeck (OU) process is a continuous-time Gaussian stochastic process with linear
mean-reverting properties first introduced to describe the fluctuating velocity of a Brownian particle
immersed in a fluid [1, 2]. It has found over the years countless applications across various subfields of
physics (as well as other disciplines), where it plays a similarly paradigmatic role as that of the harmonic
oscillator in classical and quantum mechanics. It can be understood as the overdamped limit of any Langevin
dynamics exploring the local neighborhood of a differentiable minimum of an arbitrary potential landscape.
Its equation of motion generically reads

dx(t)

dt
=−k̄x(t)+

√
2Dxζ (t) (1)

where k̄−1 > 0 is the characteristic timescale of regression, while Dx denotes the diffusivity and ζ(t) is a
delta-correlated zero mean and unit variance white noise. Key results including steady-state probability
density function, formal solution and Green’s function for the standard OU process are reviewed for
completeness in appendix A. To give but one example of its wide applicability for instance in spatially
extended settings, a lattice of elastically coupled OU processes formally defines the Gaussian free field around
which the perturbative expansion of non-conserved dynamical field theories is typically constructed [3, 4].
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While originally modelling the frictional contribution to Brownian motion, the first term in the
right-hand side of equation (1) is often interpreted in the case of overdamped dynamics as a restoring force
resulting from an effective harmonic potential V(x) = k̄x2/2 acting on the coordinate x, whereby k̄ plays the
role of a stiffness coefficient. This is the case, for instance, in many physical models of micro-particle
manipulation by optical tweezers [5–9], where force gradients are established through the inhomogeneous
electric field within a highly focused laser beam [10–13]. However, the nature of the potential V(x) might
even be more abstract, as exemplified by models of mean reverting portfolios in finance [14] or continuous
trait evolution in ecology [15]. In this interpretation of equation (1), the dynamics remain ‘overdamped’ in
the limit k̄= 0, where the process reduces to free Brownian motion in one dimension.

In all such cases, it is reasonable to expect that the underlying processes governing the potential are
themselves subject to some degree of stochasticity, implying that V(x, t)may itself be a stochastic process
[16–18]. A case in point is that of optical tweezers controlled by real laser systems, which are characterised by
small fluctuations in power output around its mean [12, 13]; these fluctuations in power lead in turn to
fluctuations in the stiffness of the potential experienced by the dielectric particle.

Inspired by this rather simple idea, we define here a generic model of diffusion in a noisy trap. Namely,
we introduce continuous, zero-mean fluctuations in the potential stiffness of the original OU process
(equation (1)). More precisely, we model these fluctuations themselves by an OU process: we characterise
this second process by an effective stiffness µ and effective diffusivity Dk (see figure 1 for a schematic
illustration and example trajectories). Overall, the resulting coupled dynamics of the particle position x(t)
and the fluctuations in the confining potential stiffness k(t) read

dx(t)

dt
=−

[
k̄+ k(t)

]
x(t)+

√
2Dxζx (t) (2a)

dk(t)

dt
=−µk(t)+

√
2Dkζk (t) (2b)

where we fix the average stiffness k̄> 0, k(t) is the zero-mean fluctuating contribution and
⟨ζi(t)ζj(t)⟩= δijδ(t− t ′). The particle dynamics reduce to a standard OU process upon setting Dk = 0. We
call this generic composite stochastic process the OU2 process and dedicate the rest of this paper work to its
extensive characterisation3. To the best of our knowledge, this model has been introduced for the first time in
two recent works by the authors [16, 17] in the context of nonequilibrium thermodynamics of diffusion in
fluctuating potentials. Alternative generalisations of the OU process have also been investigated including
models in which the location of the confining potential minimum undergoes stochastic [20] or oscillatory
[21] ‘sliding’ dynamics at fixed stiffness. The OU2 model is closely related to a number of other models,
which we mention briefly below.

Firstly, we note that the OU2 process is closely related to the problem of Brownian motion in an
intermittent harmonic potential [22, 23], where the potential switches stochastically between two states with
finite stiffnesses k1 and k2 in the manner of a telegraph process. The case where k1 = 0 and k2 > 0 has recently
received some attention as it represents a realistic implementation of stochastic resetting [16, 24–27];
interestingly, it was shown in this case that any degree of intermittency leads to the establishment of a
nonequilibrium stationary probability density for the trapped particle’s position displaying a Gaussian bulk
which eventually crosses over into exponential tails.

Furthermore, the OU2 process introduced here constitutes a continuous time extension of a class of
so-called ‘random difference equations’ (see for instance [28]), i.e. recurrence relations involving random
parameters. For instance, the model introduced in [29] is effectively a time-discretised version of the OU
process where the confining potential exhibits a fluctuating stiffness, whose fluctuations are uncorrelated in
time. More recently, Morita [30] focused on a version of these processes where the random parameter is
allowed to have correlations in time. Nevertheless, in this work, the author considers the much simpler case
where k(t) is governed by a Poisson jump process, arguing that studying the case where k(t) is governed by an
OU process, which is precisely a discrete-time analog of OU2 process, is particularly challenging.

In the study of transport in inhomogeneous environments, recent models of diffusing diffusivity have
been introduced, which allow for stochastic fluctuations in diffusivity of a free Brownian particle. These
models display Fickian diffusion (characterised by a linear time dependence of the mean-square
displacement) in the presence of non-Gaussian displacement distributions [31–33].

Moreover, establishing a connection with non-equilibrium thermodynamics, the OU2 process can be
seen as a stochastically breathing harmonic potential. Standard breathing potentials, whereby the stiffness is

3 The OU2 model, which we introduce here, is not to be confused with the squared-OUmodels, a term sometimes used in the context of
the modelling of interest rates by the Cox-Ingersoll-Ross model [19].
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Figure 1. The OU2 process as a minimal model of dissipative confinement. (a) Gaussian fluctuations around a positive mean in
the stiffness coefficient of the harmonic potential acting on an overdamped Brownian particle lead to the establishment of futile
breathing cycles, with transients of increasing/decreasing stiffness driving the particle closer to/further from the origin. (b)
Example trajectories for the particle position x(t) and the total confining potential stiffness k̄+ k(t), with k̄= 1, Dx = 1, µ= 0.01
and Dk = 0.02.

modulated deterministically in time according to a pre-defined protocol, are often studied in the context of
heat engines operating in finite time cycles [5, 34, 35]. Interestingly, generic results have been obtained in the
slow driving regime for the full distribution of the stochastic work [36].

An alternative inspiration for the OU2 process may be found in the context of motile active matter,
particularly in the canonical active particle model known as the Active OU particle [37, 38] (AOUP). Here,
out-of-equilibrium self-propulsion is introduced via a forcing term in the Langevin equation of motion,
whose statistics are those of a zero-mean OU process. However, one may equivalently interpret this term as a
linear potential whose amplitude is modulated stochastically in time. The OU2 process is thus a natural,
non-motile counterpart to the (much more studied) AOUP, offering a minimal example of dissipative
trapping and single-particle irreversibility beyond active motility.

Finally, we will see shortly that the so-called random acceleration model can be a seen as a special case of
the OU2 process [39–43].

The paper is organised as follows: we begin in section 2 with a preliminary calculation of the marginal
probability density function of the position for an OU2 process with vanishing positional noise, Dx = 0,
highlighting some non-trivial characteristics of the associated statistics. In section 3, we move away from this
limit and derive the conditional and full Green’s functions of the full OU2 process, clarifying the condition
for the stability of the dynamics. Section 4 deals with the moments of the marginal, stationary probability
density function for coordinate x in equation (2a). In particular, we obtain the necessary conditions for the
existence of the even moments ⟨x2n⟩ for arbitrary n⩾ 1 in the form of an upper bound on k̄µ2/Dk which
decreases monotonically to zero with increasing n, as well as closed form expressions for the second and
fourth moments. In section 5, we study two limits of fast stiffness dynamics by means of homogenisation
[44], solving analytically the resulting coarse-grained Fokker–Planck equation for the slow dynamics. In
section 6, we draw on known heuristic arguments from extreme value statistics (EVS) of weakly correlated
time series to conjecture the distribution of the maximum of a finite time OU2 process, verifying our
proposed classification via numerical simulations. Owing to the algebraic nature of the tails of the marginal
probability density, we observe an unexpected transition from the Gumbel to the Frechet universality class.
Section 7 is dedicated to investigating the impact of stiffness fluctuations on the mean first passage time
(mFPT) to a stationary target. Finally, we re-derive previous results for the steady-state entropy production
rate [16, 17] in a compact way in section 8, thus offering a simple thermodynamic characterisation of the
model. Some remarks and potential directions for future research are discussed in the Conclusion.

2. Exact solution in the limit of vanishing positional noise

As a preliminary analysis, we consider the limiting case of vanishing positional noise, Dx = 0 in
equation (2a), for which a series of exact results can be derived. In this case, the absence of positional
fluctuations prevents the particle from crossing the origin and x(t) remains in the half-line to which the
initial condition belongs. Here, by symmetry, we set x(0)> 0 so that x(t)> 0 without loss of generality.

3
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Figure 2.Marginal probability density function P(x, t) in the limit of vanishing positional noise, as given by equation (9), at
various time in linear and double-logarithmic scales. Here, we set k̄= 1, x0 = 1 and 2Dk/µ

2 = 1.

2.1. Probability density function
Let us denote x0 ≡ x(0) and define z≡ lnx such that we can recast the dynamics as

ż(t) =−k̄− k(t) (3)

or, equivalently,

z̈(t) = µk(t)−
√
2Dkζk (t) , (4)

which reduces to the random acceleration process [39–43] in the limit µ→ 0. Clearly, z(t)>−∞, thus
x(t)> 0 at all times.

As initial condition at t= 0, we choose z(0) = z0 (and correspondingly, x0 = ez0) and assume that the
fluctuating stiffness has been evolving from t→−∞ such that at t= 0 the particle experiences a value of k
randomly drawn from the steady-state distribution. The solution of equation (3) is thus written

z(t) = z0 − k̄t−
√
2Dk

ˆ t

0
dt ′
ˆ t′

−∞
dt ′ ′e−µ(t ′−t ′ ′)ζk (t

′ ′) , (5)

of which the time-dependent mean and variance are computed straightforwardly to be

z̄(t)≡ ⟨z(t)⟩= z0 − k̄t, (6a)

σ2
z (t)≡ ⟨z2 (t)⟩− ⟨z(t)⟩2 = 2Dk

µ2
t− 2Dk

µ3

(
1− e−µt

)
, (6b)

where ⟨· · · ⟩means an average over realisations of the noise ζk. It is interesting to note that at long times, i.e.
t≫ µ−1, the variance scales linearly with time as σ2

z (t)≃ 2Dkt/µ2 confirming that the process remains
diffusive even in the absence of positional noise. Moreover, the linear diverge of both mean and variance with
t is indicative of the absence of a well-defined steady-state. Since (5) is Gaussian, the first two moments are
sufficient to determine the time-dependent moment generating function,

Z(q, t)≡ ⟨e−iqz(t)⟩= exp

[
−iqz̄(t)− σ2

z (t)

2
q2
]

(7)

from which the corresponding probability density is easily obtained,

P(z, t) =
1√

2πσ2
z (t)

exp

[
− (z− z̄(t))2

2σ2
z (t)

]
. (8)

Via a straightforward transformation of probability, we then obtain that the probability density for the
original variable x(t) is given by the following log-normal distribution

P(x, t) =
dz

dx
P(z(x) , t) =

1

x
√
2πσ2

z (t)
exp

[
− (ln(x)− z̄(t))2

2σ2
z (t)

]
. (9)

The exact probability density (9) is shown for different values of t in figure 2.

4
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2.2. Growth and trapping
Equipped with the time-dependent probability density (9), we can start to study the main qualitative features
of the system. Namely, upon considering three key statistics of the process — the median, mean and mode of
x(t) — each of which offers a different perspective on the dynamics, we discuss the conditions under which
the process is said to be: (i) trapped in the sense that the associated statistic reverts back to the center of the
potential (here, x= 0) or (ii) growing in the sense that the associated statistic grows exponentially in time.

Median— The median is defined as the value xM in the support of the distribution such that

ˆ xM

0
dx P(x, t) =

1

2
. (10)

For the log-normal distribution (9), an explicit expression for the median can be written and simply gives

xM (t) = exp [̄z(t)] = x0 exp
(
−k̄t
)
. (11)

Interestingly, we note that the behavior of the median changes as k̄ changes sign. Indeed for k̄> 0, we can
easily see that the median xM(t) approaches zero exponentially as t increases. Conversely, for k̄< 0, we find
that xM(t) grows exponentially with t. Note that the same result holds for every finite percentile xq of the
distribution. Indeed, these can be written explicitly as

xq (t) = x0 exp

[
−k̄t+ 2

√
Dkt

µ2
− Dk (1− e−µt)

µ3
erf−1 (2q− 1)

]
(12)

with xM ≡ x1/2, where the additional term under square root is subleading at large t. In other words, as k̄
changes sign from positive to negative,most of the particles go from being trapped around x= 0 to seeing
their position grow exponentially in time.

Mean— Secondly, let us consider the mean of the distribution (9), which can be computed exactly to be

x̄(t) = exp

[
z̄(t)+

σ2
z

2

]
= x0e

Dk
µ3 (1−e−µt) e

−
(
k̄− Dk

µ2

)
t ∝
t→∞

exp

[
−
(
k̄− Dk

µ2

)
t

]
. (13)

The mean thus decays exponentially with time for k̄> Dk/µ
2, a more stringent condition compared to that

of median trapping.

Mode— Finally, we turn our attention to the mode xm, which is defined as the location of the maximum of
the probability density, ∂xP(x, t)|xm = 0. For the log-normal distribution in equation (9), the mode is given
by

xm (t) = exp
[
z̄(t)−σ2

z

]
= x0e

− 2Dk
µ3 (1−e−µt) e

−
(
k̄+

2Dk
µ2

)
t ∝
t→∞

exp

[
−
(
k̄+

2Dk

µ2

)
t

]
. (14)

Here, we notice that the behavior of the mode for the OU2 process changes from trapped to growing as
k̄+ 2Dk/µ

2 changes sign. In other words, for k̄<−2Dk/µ
2, the distance of themost likely outcome grows

exponentially.

Remarkably, these results imply the existence of two non-trivial regimes:

(i) for 0< k̄< Dk/µ
2, themean position of an ensemble of particles undergoing OU2 processes without

positional noise grows indefinitely, even though themedian position approaches zero exponentially.
This counterintuitive result occurs due to the presence of rare trajectories with exceptionally large
displacements.

(ii) for−2Dk/µ
2 < k̄< 0, all finite percetiles diverge, which implies that almost all particles escape

exponentially to infinity. However themode of the particle positions converges to 0, implying that the
most likely outcome is to remain near the origin.

5
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2.3. Optimal trapping and condition for growth
It is interesting to note that, while the parameters µ and Dk might not be accessible to direct experimental
control in many physical implementations of this model, one may still be able to control the strength of the
couplings between the particle and the potential via a medium-dependent parameters u such that
ẋ=−u(k̄+ k(t)). In this case, the mean position becomes x̄(t;u)∝ exp [(−k̄u+ u2 Dk

µ2 )t] for large enough t.
For example in an experiment with optical tweezers, u can be tuned by changing the viscosity or dielectric
properties of the colloid, while it may not be possible to improve the properties of the confining potential by

increasing its mean k̄ or reducing the noise strength Dk. The exponent is now negative for u< µ2 k̄
Dk

. In other

words, provided that k̄ is positive we can always induce mean trapping by reducing the coupling of the
particles with the potential itself. On the other hand, an excessive reduction of the coupling u results in a
weak confinement. The optimal value of uminimising the exponent, hence the magnitude of the mean, and
thus providing the best confinement of the latter is uopt = µ2/2Dk.

Another application of the OU2 process can be found in finance, where equation (2a) can be used as a
simplified model for the growth of the capital x of a company. In this case, exponential growth rather than
trapping is the desired outcome. In this model, the stiffness k represents instead (minus) the return on
investment of its operations, which is itself subject to stochastic market fluctuations. While the mean return
−k̄ and volatility Dk of investment can be difficult to improve, u can be tuned by simply reinvesting more

capital, while u> 1 can be obtained by using leverage. The expected capital will grow for u> uth =
µ2 k̄
Dk

,
which can happen also for companies with negative mean returns.

3. Conditional and full green’s function

We now return to the full model, including noise in the displacement, and calculate its Green’s function, first
conditional on a particular value of k at the time of perturbation, then averaged over the corresponding
steady-state distribution. From equation (2), we can write that the formal solution for x is given by

x(t) =
√
2Dx

ˆ t

−∞
dt ′ ζx (t

′)exp

[
−k̄(t− t ′)−

ˆ t

t′
dt ′ ′ k(t ′ ′)

]
. (15)

From equation (15), we identify the conditional Green’s function of the process, which describes the typical
evolution of a noise-generated perturbation,

G (t;k0) =

〈
exp

[
−k̄t−

ˆ t

0
dt ′ k(t ′)

]〉
k0

Θ(t) (16)

where ⟨•⟩k0 denotes an average with respect to the possible realisations of the process k(t) conditioned on the
initialisation k(0) = k0, and the Heaviside theta functionΘ(t) ensures causality. The conditional Green’s
function G(t;k0) quantifies the typical temporal evolution of a perturbation generated at t= 0 by the noise
ζx. Exploiting the relation between the moment and cumulant generating functions and the fact that the
cumulants of order 3 and above vanish for the OU process due to it being Gaussian, we write

G (t;k0) = e−k̄t exp
∞∑
n=1

(−1)n

n!

〈(ˆ t

0
dt ′k(t ′)

)n〉
c,k0

(17a)

= e−k̄t exp

[
−
ˆ t

0
dt ′⟨k(t ′)⟩c,k0 +

1

2

ˆ t

0
dt ′dt ′ ′ ⟨k(t ′)k(t ′ ′)⟩c,k0

]
, (17b)

where ⟨•⟩c,k0 denotes the conditional cumulants. The conditional cumulants of first- and second-order can
easily be calculated independently

⟨k(t ′)⟩c,k0 = k0e
−µt ′ , (18a)

⟨k(t ′)k(t ′ ′)⟩c,k0 =
Dk

µ

(
e−µ|t ′−t ′ ′| − e−µ(t ′+t ′ ′)

)
. (18b)

With this result in hand, we can perform the integral in (17) to obtain the conditional propagator

G (t;k0) = exp

[
−
(
k̄− Dk

µ2

)
t− k0

µ

(
1− e−µt

)
+

Dk

2µ3

(
4e−µt− e−2µt− 3

)]
. (19)

Interestingly, the propagator decays to zero at long times only if k̄> Dk/µ
2, while fluctuations grow

exponentially otherwise. This highlights the importance of the competition between two timescales in the

6
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problem, namely 1/k̄— the typical mean reversion time for the particle position—and µ2/Dk — a
characteristic timescale for the stiffness fluctuations.

Also note that the dependence on the initial condition for the stiffness, k0, is rather simple. Expanding
the exponent to leading order in small times t≪ 1, we find

G (t;k0) = exp
[
−
(
k̄+ k0

)
t+O

(
t2
)]

(20)

indicating that at short times the growth/decay of fluctuations is controlled by the initial condition k0, such
that fluctuations might initially grow exponentially (when k0 <−k̄), even when they are eventually
suppressed on average at long times. In other words, the conditional propagator is not necessarily monotonic.

We might also be interested in a situations where the initial value of the potential stiffness k0 is unknown.
Assuming that the statistics of k(t) have reached steady-state by the time we perturb our system, we can
calculate the full propagator by averaging equation (19) over k0 which has a known steady-state Gaussian
probability density function, i.e.

Gfull (t) = exp

[
−
(
k̄− Dk

µ2

)
t+

Dk

2µ3

(
4e−µt− e−2µt− 3

)]〈
exp

[
−k0

µ

(
1− e−µt

)]〉
(21)

where ⟨•⟩ now denotes an expectation with respect to the steady-state probability density function of k0.
Using the fact that the last term in the above is simply the moment generating function of a zero-mean
normal distribution with conjugate variable s=−(1− e−µt)/µ, we eventually arrive at

Gfull (t) = exp

[
−
(
k̄− Dk

µ2

)
t+

Dk

2µ3

(
4e−µt− e−2µt− 3

)
+

Dk

2µ3

(
1− e−µt

)2]
= exp

[
−
(
k̄− Dk

µ2

)
t+

Dk

µ3

(
e−µt− 1

)]
. (22)

We note that in the limit where Dk → 0, we recover the Green’s function for the standard OU process,
cf equation (A.4). The long time behaviour is the same as for the conditional case, however expanding again
at small times t≪ 1, we now find Gfull(t) = exp

[
−k̄t+O(t2)

]
. This is to be expected since the average of the

exponential converges to the exponential of the average when t→ 0.

4. Positional moments

We now discuss the steady-state moments of the marginal probability density function for the coordinate x.
In particular, we derive conditions for the existence of finite moments. Already in the case of a Brownian
particle confined in a potential whose stiffness switches stochastically between two finite values k1 and k2
following a two-state Markov jump process, it was shown that the condition for existence of a moment of
order s is more restrictive than merely ensuring that the stiffness is positive on average, ⟨k⟩t > 0. Indeed, the
existence of ⟨|x|s⟩ requires that k1P(k1)+ k2P(k2)− sk1k2 < 0 with P the stationary probability mass function
of the jump process [45]. We will see in this section that similar conditions can be derived in the OU2 case.

Starting from the formal solution, equation (15), we first argue by symmetry that all odd moments are
expected to vanish, ⟨x2n+1(t)⟩= 0 for all n ∈ N. The even moments are on the other hand given by

⟨x2n (t)⟩= (2Dx)
n

〈(ˆ t

−∞
dt ′ ζx (t

′)e−k̄(t−t ′) exp

[
−
ˆ t

t′
dt ′ ′ k(t ′ ′)

])2n
〉
. (23)

Using the fact that ζx(t) and k(t) are uncorrelated stochastic processes, we write〈
2n∏
i=1

ζx (t
′
i )exp

[
−k̄(t− t ′i )−

ˆ t

t ′i

dt ′ ′i k(t
′ ′
i )

]〉

=

〈
2n∏
j=1

ζx

(
t ′j

)〉〈 2n∏
i=1

exp

[
−k̄(t− t ′i )−

ˆ t

t ′i

dt ′ ′i k(t
′ ′
i )

]〉
. (24)

The first expectation on the right-hand side can be simplified by Wick–Isserlis theorem to a sum of product
of white noise correlators, i.e. Dirac delta functions, with (2n− 1)!! = (2n)!/(2nn!) summands
corresponding to all possible pairings P2n of the random variables:〈

2n∏
j=1

ζx

(
t ′j

)〉
=
∑
p∈P2n

∏
{i,j}∈p

〈
ζx (t

′
i )ζx

(
t ′j

)〉
. (25)

7
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Since the overall integral is invariant under permutation of the indices, all summands give the same
contribution. The expression for the moments thus simplifies to

⟨x2n (t)⟩=Nn

ˆ t

−∞
dt1<...<n exp

[
−2k̄

n∑
i=1

(t− ti)

]〈
exp

−2
n∑

j=1

ˆ t

ti

dt ′i k(t
′
i )

〉 (26)

withNn = (2Dx)
n(2n− 1)!!n!, where we have additionally imposed the arbitrary time ordering

t1 < t2 < .. . < tn in the multiple integrals, compensated by the combinatorial prefactor n!, without loss of
generality. Next, we exploit the identity relating the moment generating function and the exponential of the
corresponding cumulant generating function〈

exp

[
−2

n∑
i=1

ˆ t

ti

dt ′i k(t
′
i )

]〉
= exp

∞∑
m=1

1

m!

〈(
−2

n∑
i=1

ˆ t

ti

dt ′i k(t
′
i )

)m〉
c

= exp

〈
2

(ˆ t

t1

dt ′1 k(t
′
1)+

ˆ t

t2

dt ′2 k(t
′
2)+ . . .+

ˆ t

tn

dt ′n k(t
′
n)

)2
〉

c

(27)

where we have used the fact that cumulants of orderm> 2 vanish for the equilibrium OU process governing
k(t), equation (2b), while the first order cumulant is zero at steady state. The right-hand side of (27) can be
evaluated as〈

2

(ˆ t

t1

dt ′1 k(t
′
1)+

ˆ t

t2

dt ′2 k(t
′
2)+ . . .+

ˆ t

tn

dt ′n k(t
′
n)

)2
〉

c

=
2Dk

µ

( n∑
i=1

ˆ t

t1

dt ′i

ˆ t

t1

dt ′ ′i e−µ|t ′i −t ′ ′i |

)
+ 2

 n∑
i<j

ˆ t

ti

dt ′i

ˆ t

tj

dt ′j e
−µ|t ′i −t ′j |


=

4Dk

µ3

( n∑
i=1

µ(t− ti)− 1+ e−µ(t−ti)

)
+ 2

 n∑
i<j

e−µ(t−ti) + e−µ(t−tj)− e−µ|tj−ti| + 2µ
(
t− tj

)
− 1

 .
(28)

Here we have used the result for the double integral

ˆ t

ti

dt ′i

ˆ t

tj

dt ′j e
−µ|t ′i −t ′j | =

1

µ2

(
e−µ(t−ti) + e−µ(t−tj)− e−µ|tj−ti| + 2µ

(
t−max

(
ti, tj
))

− 1
)
. (29)

We now compute (28) for different values of n.

4.1. Variance (n= 1)
First consider the particular case n= 1 for which compact expressions can be obtained. In this case the
right-hand side of (27) using (28) simplifies to〈

exp

[
−2

n∑
i=1

ˆ t

ti

dt ′i k(t
′
i )

]〉∣∣∣∣∣
n=1

= exp

[
4Dk

µ3

(
e−µ(t−t1) +µ(t− t1)− 1

)]
. (30)

Using this result, we can then rewrite (26) for n= 1 as

⟨x2⟩= 2Dx

ˆ t

−∞
dt1 exp

[
−
(
2k̄− 4Dk

µ2

)
(t− t1)+

4Dk

µ3

(
e−µ(t−t1) − 1

)]
. (31)

It is clear by inspection that the second moment exists if and only if Dk/µ
2 < k̄/2. Note that this is a stricter

condition compared to that found in section 3 for the exponential decay of the Green’s function, suggesting
the existence of parameter regions for which the steady state exists but not the variance. We now write the
double exponential term in equation (31) as a power series,

exp

[
4Dk

µ3
e−µ(t−t1)

]
=

∞∑
ℓ=0

1

ℓ!

(
4Dk

µ3

)ℓ

e−µℓ(t−t1). (32)

8



New J. Phys. 26 (2024) 103016 L Cocconi et al

Figure 3. Comparison between analytical results and numerical simulations for the second and quartic steady-state moments of
the marginal probability density function for the coordinate x of the OU2 process, showing good agreement between the two. The
analytical result for the second moment ⟨x2⟩, given by equation (33) is defined for Dk/µ

2 < k̄/2, while that for the quartic
moment ⟨x4⟩, given by equation (38) is defined for Dk/µ

2 < k̄/4. Here, we set Dx = 1 and k̄= 1. Grey vertical lines indicate the
predicted radius of convergence.

Substituting back into (31), swapping integral and sum, performing the simple exponential integral and
rearranging terms, we eventually arrive at the expression

⟨x2⟩= 2Dx

µ
e−ξ

∞∑
ℓ=0

ξℓ

ℓ! (σ− ξ+ ℓ)
(33)

with ξ = 4Dk/µ
3 and σ = 2k̄/µ, which reduces to ⟨x2⟩= Dx/k̄ for Dk = 0, as expected of the standard OU

process. This analytical result is plotted against numerical simulation in figure 3. Formally, the right hand
side of equation (33) can be written more compactly in terms of the lower incomplete Gamma function
γ(a,b), which has the following series expansion [46]

γ (a,b) = ba
∞∑
ℓ=0

(−b)ℓ

ℓ! (a+ ℓ)
, (34)

allowing us to reduce equation (33) to ⟨x2⟩= 2Dxe−ξ(−ξ)−σ+ξγ(σ− ξ,−ξ) or, in the original notation,

⟨x2⟩= 2Dx

(
−4Dk

µ3

) 4
µ

(
Dk
µ2 − k̄

2

)
exp

[
−4Dk

µ3

]
γ

(
4

µ

(
k̄

2
− Dk

µ2

)
,−4Dk

µ3

)
. (35)

4.2. Quartic moment (n= 2)
In this case the right-hand side of (27) becomes, for n= 2 and using (28),

⟨x4⟩= 6(2Dx)
2
ˆ t

−∞
dt1

ˆ t

t1

dt2 e
−2[k̄(t−t1)+k̄(t−t2)]

× exp

[
4Dk

µ3

(
2e−µ(t−t1) + 2e−µ(t−t2) − e−µ(t2−t1) − 3+µ(t− t1)+ 3µ(t− t2)

)]
. (36)

Expanding once again the double exponential as power series we then obtain

⟨x4⟩= 6(2Dx)
2 e

− 12Dk
µ3

∞∑
n,m,ℓ=0

(
− 1

2

)k( 8Dk
µ3

)m+ℓ+k

m!k!ℓ!

×
ˆ t

−∞
dt1

ˆ t

t1

dt2 exp

{
−2

[
k̄− 2Dk

µ2
(t− t1)− 2

(
k̄− 6Dk

µ2

)
(t− t2)

]
−µm(t− t1)−µℓ(t− t2)−µk(t2 − t1)

}
, (37)

9
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Figure 4.Marginal probability density functions for the coordinate x of the OU2 process obtained from numerical simulations.
The asymptotic scaling of the empirical probability is shown as a function of the dimensionless parameter combination Dk/µ

2

controlling the convergence of the marginal moments, as studied in section 4. Solid lines indicate the exponents stated in
equation (40). For Dk/µ

2 = 0, corresponding to the standard OU limit, the distribution is a simple Gaussian (dashed gray line).
For any finite Dk/µ

2 > 0, we instead observe a transition to algebraic scaling. Here, we work in units such that Dx = k̄= 1
without loss of generality.

indicating that the quartic moment exists if and only if Dk/µ
2 < k̄/4. The double integral can now be

performed in closed form,

⟨x4⟩= 24D2
xe

− 12Dk
µ3

∞∑
k,m,ℓ=0

(
− 1

2

)k( 8Dk
µ3

)m+ℓ+k

m!k!ℓ!
(

4Dk
µ2 − 2k̄−µ(m+ k)

)(
16Dk
µ2 − 4k̄−µ(m+ ℓ)

) , (38)

giving us the most compact expression for the quartic moment. This is plotted against numerical simulations
in figure 3.

4.3. Higher values of n
For the general case n> 2, we focus on determining the criteria for convergence of the moments. As shown
in appendix B, one can generalise the arguments developed above and obtain the following criteria of
convergence for the moment of order 2n

Dk

µ2
<

k̄

2n
(39)

which is in agreement with the results we just obtained for the particular cases n= 1 and n= 2.
From this criterion of convergence, we can argue for the asymptotic scaling of the marginal probability

density function P(x). Indeed, assuming that the asymptotic scaling exponent is a continuous function of
Dk/µ

2, we expect that the value of Dk/µ
2 at which the moment of order 2n becomes divergent, namely

Dk/µ
2 = k̄/(2n), corresponds to that at which the marginal probability density scales asymptotically as

x−2n−1 at large x. We conclude that, asymptotically,

P(x)∼ |x|−1− k̄µ2

Dk . (40)

This result in agreement with the closed form expression for P(x) derived analytically in section 5 below by
means of homogenisation in the fast–slow limit, as well as with numerical simulations for the full model, as
shown in figure 4.

5. Fast stiffness limit

In many applications, such as the optical tweezer example discussed in the introduction, the potential
stiffness fluctuations can be reasonably assumed to occur on a comparatively fast timescale. In this regime,
analytical results for the marginal probability density function P(x) can be obtained by enforcing a formal
separation of timescales between the slow dynamics of the particle position x(t) and the fast dynamics of the
stiffness fluctuations k(t). The elimination of the fast stiffness dynamics can subsequently be carried out
following a multiscale approach [44]. In the following, we consider two fast–slow regimes: (i) a naïve

10
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adiabatic limit, where the characteristic timescale of the k dynamics is sent to zero at fixed variance
σ2
k = Dk/µ, and (ii) a nontrivial limit, where the variance σ2

k diverges as the inverse of the characteristic
timescale, leading to k(t) in equation (2a) becoming statistically equivalent to a Gaussian white noise.

5.1. Naïve adiabatic limit
First, we consider a naïve adiabatic limit, in which stiffness fluctuations are expected to be irrelevant.
Formally, we introduce a real dimensionless coefficient ε and proceed to the rescaling µ→ µ̃/ε2 and
Dk → D̃k/ε

2 in equation (2b) which governs the dynamics of k(t). We then take the limit ε→ 0, keeping the
variance of the stiffness σ2

k = Dk/µ= D̃k/µ̃ constant. In this limit, one finds that the effective dynamics of
the slow variable xε are obtained by replacing k(t)→ 0 in equation (2b) by its mean value. Consequently, xε
is shown to be governed by the OU dynamics,

ẋε (t) =−k̄xε (t)+
√
2Dxζx (t) . (41)

A rigorous derivation of this result is presented in appendix C.2. We conclude that in this trivial limit, we do
not retain any signature of the stiffness fluctuations.

5.2. White noise limit
Intuitively, we can go beyond this first trivial limit by replacing the Gaussian process k(t) not by its mean
value but by a Gaussian white noise with appropriate mean and standard deviation. Formally, this second
regime is obtained by performing the alternative rescaling µ→ µ̃/ε2 and Dk → D̃k/ε

4, before taking the limit
ε→ 0 which keeps the ratio Dk/µ

2 constant. In situations where x(t) denotes the position of an overdamped
particle, this regime can be understood physically as a low viscosity, high temperature limit. Indeed, given an
effective friction coefficient γ and bath temperature T, we have by the Stokes-Einstein relation that µ∝ γ−1

while Dx ∝ γ−1T. Taking γ = γ̃ε2 and T= T̃ε−2 produces the desired rescaling.
Mathematically, this amounts to k(t) in equation (2b) becoming statistically equivalent to a Gaussian

white noise with covariance ⟨k(t)k(t ′)⟩= 2D̃k/µ̃
2δ(t− t ′). Importantly, the term k(t)x(t) appearing when

integrating equation (2a) should now be treated as a Stratonovich product [44, 47]. This is not trivial (see
[48], section 10.3, for a formal treatment) and a different interpretation of the multiplicative noise might be
required if the overdamped and white noise limit were to be taken in the opposite order [49]. Taking care of
the Stratonovich-to-Itô conversion [50], we find that the Itô form of the resulting Langevin equation in the
limit ε→ 0 reads

ẋε (t) =−
(
k̄− Dk

µ2

)
xε (t)+

√
2

(
Dx+

Dkx2ε (t)

µ2

)
ζx (t) (42)

where we have used that D̃k/µ̃
2 = Dk/µ

2 in this case. Interestingly, this shows a clear instability as Dk/µ
2 > k̄

due to a renormalisation of the confining potential stiffness and, unlike the original dynamics, is
characterised by multiplicative noise. The Fokker–Planck representation of equation (42),

∂tP(xε, t) = ∂xε

{
∂xε

[(
Dx+

Dkx2ε
µ2

)
P(xε, t)

]
+

(
k̄− Dk

µ2

)
xεP(xε, t)

}
, (43)

can equivalently be derived by multiscale methods (see appendix C.2). Interestingly, equation (43) can be
mapped onto an associated Legendre differential equation, see appendix D. In the rest of this subsection we
drop the subscript of ε and define the shorthands h≡ Dk/µ

2 and κ≡ k̄− h for the sake of simplicity.
We now proceed to determining the steady state probability density function P(x) associated with the

Langevin equation (42) for the slow x dynamics. To do so, we introduce a variable z(x) whose stochastic
dynamics do not involve multiplicative noise [51]

z(x) =

ˆ x

dξ

(
Dx+

Dkξ
2

µ2

)− 1
2

=
1√
h
tanh−1

( √
hx√

Dx+ hx2

)
. (44)

By Itô’s lemma, the dynamics for z take the form

ż(t) =− (κ+ h)x√
(Dx+ hx2)

+
√
2ζx (t) =−

(κ+ h) tanh
[√

hz(t)
]

√
h

+
√
2ζx (t) (45)

where the noise is now additive as we anticipated.
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The dynamics for z are exactly those of a passive Brownian particle in a static potential

V(z) =

(
κ+ h

h

)
ln
[
cosh

(√
hz
)]

, (46)

whence the steady state probability distribution for z is given by the Boltzmann measure

PZ (z) = e−V(z)/Z, Z =

√
π

h

Γ[(h+κ)/2h]

Γ [(2h+κ)/2h]
. (47)

Finally, we perform a transformation of probability distributions to obtain a simple expression for the
probability density of x,

PX (x) =
dz

dx
PZ (z(x)) =

√
h

π

Γ[(2h+κ)/2h]

Γ[(h+κ)/2h]
D

h+κ
2h

x

(
Dx+ hx2

)− κ
2h−1

. (48)

Asymptotically, we again find that

PX (x)∼ |x|−k̄µ2/Dk−1 (49)

It can be checked by direct substitution that P(x) = PX(x) solves the Fokker–Planck equation (43) at steady
state. Notice also that equation (48) is in agreement with the asymptotic scaling of the marginal probability
density for the full OU2 process, equation (40). In particular, it is straightforward to check that the existence
of moments of order 2n demands Dk/µ

2 < k̄/(2n).

6. Statistics of maxima

Despite their relevance in many domains, such as climate modelling, there is currently no general framework
to study the EVS of correlated random variables [52]. Amongst the few exceptions is the standard OU
process, for which the EVS can be compute exactly and can be shown to belong to the Gumbel universality
class [53]. Accordingly, the asymptotic probability density of the maximum X(t)≡ maxτ∈[0,t]{x(τ)} of the
standard OU process is given by

ΦG (X;m, s) = s−1e−(z+e−z), z=
X−m

s
(50)

where the first two moments of X(t) can be expressed as

⟨X⟩=m+ sγ, ⟨X2⟩= π2s2

6
(51)

respectively, where γ = 0.5772 . . . is the Euler–Mascheroni constant. It is thus natural to wonder how the EVS
of the OU2 process compare to those of the standard OU process.

While a fully analytical approach is beyond the scope of this work, we can draw on the renormalisation
group heuristic introduced in [52] to argue that, as long as correlations decay over a finite time, the EVS for a
weakly correlated stochastic process are still expected to converge to one of the three limiting distributions
for uncorrelated random variables, namely Gumbel, for exponentially decaying parent distributions, Fréchet,
for fat-tailed parent distributions, and Weibull, for parent distributions with compact support [52, 53].
Combining this heuristic with the finding of section 4 that the probability density of x decays algebraically at
large x, specifically as− lnP(x)∼ 1+ k̄µ2/Dk ≡ 1+α, leads us to conjecture that the EVS for the OU2

process should converge to a Fréchet distribution with Dk-dependent characteristic exponent. In particular,
we consider the Fréchet probability density for X(t) = maxτ∈[0,t]{x(τ)} given by

ΦF (X;m, s) =

{
0 for z⩽m
α
s z

−1−αe−z−α

for z>m
, with z=

X−m

s
(52)

where the first two moments of X(t) are expressed as

⟨X⟩=m+ sΓ

(
1− 1

α

)
, ⟨X2⟩= s2

[
Γ

(
1− 2

α

)
−Γ2

(
1− 1

α

)2
]

(53)

the latter being defined only for α> 2. We find this conjecture to be in good agreement with numerical
simulations of the full model, as shown in figure 5. As expected, Gumbel EVS are recovered upon setting
Dk = 0, i.e. in the absence of potential fluctuations.
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Figure 5. Extreme value statistics for the OU2 process. In the absence of potential fluctuations, Dk = 0, we recover the standard
OU process, for which the limiting distribution of the maximum is known to be of the Gumbel type, equation (50) (a). In the
presence of potential fluctuations, Dk > 0, we conjecture a transition from Gumbel to Fréchet universality class, equation (52),
with a non-universal exponent α≡ k̄µ2/Dk (b). In both cases, we find good agreement between numerical and analytical
standardised distributions.

7. First-passage time statistics

We now focus on the impact of the continuous fluctuations of the potential stiffness present on the
first-passage time statistics of the standard OU process, as characterised in [22, 54]. The rate at which a
Brownian particle escapes over an energy barrier is a central problem in statistical physics dating back to
Kramers [55], finding applications across disciplines through reaction-rate theory [56]. Typically, the mean
first-passage time for a particle to escape over an energy barrier is evaluated from the probability flux across
an absorbing boundary situated at the barrier.

Calculating the escape rate over a fluctuating energy barrier for a Brownian particle has attracted some
attention in the past [57–60]. At low temperatures, zero-mean fluctuations in the energy barrier height lead
to so-called resonant activation and to a reduction of the mean first-passage time, effectively aiding the escape
process [57–59]; resonant activation has been observed for general confining potentials [56, 60]. In general,
solving for the first-passage time distribution and its moments for the coupled dynamics of the particle
position and potential stiffness constitutes a formidable task. To the best of our knowledge, only approximate
results can be derived in the limit where the timescale associated with the potential stiffness fluctuations is
negligible compared to that of the particle position dynamics, i.e. in the fast stiffness limit described above.
The analysis of the high temperature case is particularly challenging: even for static harmonic potentials
Kramers’ theory has been shown to breakdown in this limit [54]; the high temperature limit in the case of a
fluctuating potential is an open problem.

Here, we instead tackle this problem numerically. Specifically, we numerically integrate equation (2)
using the Euler–Maruyama method with timestep dt= 10−4. For all results presented here (see figure 6), we
simulatem= 105 realisations of the coupled dynamics in which the particle is initialised at x0 = 0 and we
place an absorbing boundary condition in xa > 0, fixing Dx = k̄= 1 with µ= 0.1. We have confirmed that all
realisations lead to a finite first-passage time to the absorbing boundary condition. We probe a wide range of
values for the stiffness fluctuations strength, such that for high enough values of Dk/µ

2, the steady-state
distribution for the particle position may not exist. However, for all values of the stiffness fluctuations
strength Dk/µ

2 studied here, we have checked that the standard deviation of the mFPT is finite and
independent of the number of realisations form sufficiently large ensuring the convergence of the mFPT.

A first look at figure 6 shows that the mFPT independently of the target location is generically a
non-trivial non-monotonic function of the stiffness fluctuation strength, Dk/µ

2. In particular, we find that
the mFPT to the absorbing target can be significantly reduced (more than one order of magnitude) by strong
enough stiffness fluctuations Dk/µ

2 for targets which are not too close to the initial position, consistently
with previous studies on resonant activation [57–59]. Indeed, for large xa thermally activated escape events
in the absence of potential fluctuations become exceedingly rare. Conversely, we show that stiffness
fluctuations can increase the mFPT compared to the standard OU case (i.e. the zero stiffness fluctuations
limit, Dk/µ

2 → 0) if xa is small. Said differently, for targets very close to the initial conditions, additional
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Figure 6. First-passage time statistics as a function of stiffness fluctuations strength. (a) Mean first-passage time as a function of
fluctuation strength Dk/µ

2 for various absorbing target locations xa > 0. (b) Mean first-passage time normalised by the mean
first-passage time of the standard Ornstein–Uhlenbeck process (i.e. the Dk/µ

2 → 0 limit). We observe that stiffness fluctuations
can significantly reduce the mean first-passage time to targets located far enough from the initial conditions (here, in x0 = 0). (c)
Coefficient of variation for the first-passage statistics showing non-monotonic behavior for all target locations. (d) Empirical
histograms of the first passage time normalised by its standard deviation, showing an exponential decay of the first passage
probability at long times. All results presented here are obtained via the integration of equation (2) using an Euler–Maruyama
method with Dx = k̄= 1 over an ensemble ofm= 105 realisations of the coupled dynamics.

fluctuations coming from the stiffness dynamics can be detrimental and a system with constant stiffness k̄
will instead be optimal. We thus hypothesise that the non-monotonic dependence of the mFPT on Dk/µ

2 for
intermediate values of xa marks a crossover between these two regimes. Furthermore, we observe that in all
cases the coefficient of variation of the first-passage times, στ/τ̄ , first strongly increases before reaching a
maximum at the same value of Dk/µ

2; at large enough fluctuations strength, the coefficient of variation
decays monotonously with fluctuation strength for all target locations. Interestingly, we find that the
first-passage times are exponentially distributed at both low and high values of Dk/µ

2 for the most distant
absorbing target location.

8. Entropy production

We now consider the thermodynamic implications of the stiffness fluctuations characterising the OU2

process. Indeed, we expect a non-zero rate of entropy production at steady-state [16, 17, 61] as the system
performs work to change the stiffness. Furthermore, the existence of steady-state divergence-free probability
currents in the (x, k)-plane, as shown on figure 7, implies a breaking of time-reversal symmetry. It is in this
sense that we have previously referred to the OU2 process as a minimal model of dissipative confinement. As
detailed in [16] and appendix E, such dissipation can be written in terms of the second moment of the
steady-state marginal probability density function for the coordinate x, which we computed in section 4. We
now rederive this result using a shortcut and call upon the results of section 4 to provide a clearer picture of
the thermodynamic properties of the OU2 process.

As a preliminary step, let us introduce the Fokker–Planck formulation [62] of the Langevin
dynamics (2a) and (2b),

∂tP(x,k) =
[
Dx∂

2
x +Dk∂

2
k

]
P(x,k)+

(
k̄+ k

)
∂x [xP(x,k)]+µ∂k [kP(x,k)] . (54)
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Figure 7. Steady state probability density (contours) and out-of-plane component of the curl of the steady-state probability
current. The existence of steady state divergence-free currents implies time-reversal symmetry breaking and thus a non-zero
entropy production, which we calculate analytically in section 8.

Multiplying both sites of equation (54) by x2 and subsequently integrating with respect to both x and k, using
integration by parts where necessary, gives the remarkably simple relation

〈(
k(t)+ k̄

)
x2 (t)

〉
= Dx. (55)

Note however that, when carrying out this procedure, one encounters the following integral

ˆ
dxdk x2

(
k+ k̄

)
∂x [xP(x,k)] = k̄

ˆ
dxdk x2∂x [xP(x,k)]

= k̄

[
x3
ˆ

dkP(x,k)

]+∞

x=−∞
− 2k̄

ˆ
dxdk x2P(x,k) . (56)

For the boundary term on the right-hand side to vanish, it is required that the marginal probability density
P(x)≡

´
dkP(x,k) decays faster than P(x)∼ x−3 as x→∞. This is also the condition for the existence of the

second moment, such that the validity of equation (55) is contingent upon the existence of ⟨x2⟩.
The mean rate of entropy production, denoted Ṡi, is related to the Jarzynski stochastic work [21, 36]

Wτ =

ˆ τ

0
dt ẋ ◦

[(
k(t)+ k̄

)
x(t)

]
=

1

2

ˆ τ

0
dt k̇(t) ◦ x2 (t) (57)

via

Ṡi = lim
τ→∞

1

Dx
⟨Wτ ⟩=− µ

2Dx
⟨kx2⟩= µk̄

2Dx

(
⟨x2⟩− Dx

k̄

)
(58)

where ◦ denotes a Stratonovich product and we have used (55) to replace ⟨kx2⟩ in equation (58). Note that
⟨x2⟩> Dx/k̄ for all Dk > 0 [16], such that the second law of thermodynamics Ṡi ⩾ 0 is always satisfied. Now,
using equation (33) for the variance, we can write the steady-state entropy production rate as

Ṡi =
µ

2

(
se−ξ

∞∑
ℓ=0

ξℓ

ℓ! (s− ξ+ ℓ)
− 1

)
(59)

where again we have defined ξ = 4Dk/µ
3 and s= 2k̄/µ. Expanding to leading order in weak stiffness noise,

Ṡi = µξ/[2s(1+ s)]+O(ξ2) = Dk/[k̄(µ+ k̄)]+O(ξ2), which vanishes at Dk = 0. Remarkably, the entropy
production rate diverges together with ⟨x2⟩ as Dk/µ

2 approaches k̄/2 from below.
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9. Conclusion

We have examined a number of statistical, dynamic and thermodynamic properties of the OU2 process: a
generalised OU process obtained by allowing for the associated stiffness coefficient to undergo OU-like
stochastic fluctuations around a positive mean. To the best of our knowledge, this is the first systematic
exploration of such a model, which was originally introduced in two recent works by some of the authors on
the thermodynamics of Brownian motion in fluctuating potentials [16, 17]. This process finds physical
relevance in contexts where effective harmonic confining potentials are generated by a non-ideal contextual
processes, e.g. when colloid are manipulated by optical tweezers with realistic laser power stability [12, 13].
We also argued that the OU2 model is closely related to models in stochastic search with resetting [16, 24–27]
and active matter [17, 37, 38], and that it constitutes a stochastic counterpart to the breathing harmonic
potentials studied in the thermodynamics literature [5, 34–36].

We started our analysis by considering the limit of vanishing positional noise, for which the
time-dependent probability density can be obtained in closed form, equation (8). From this, we derived
exact expressions for the median (equation (11)), mode (equation (14)) and mean (equation (13)), whose
time-dependence was found to transition from exponentially decreasing (trapped regime) to exponentially
increasing (growing regime) at different non-trivial critical values of the non-dimensional parameter
F ≡ Dk/(µ

2k̄).
Having reintroduced a finite positional noise, we computed the conditional and full Green’s function of

the process, equations (19) and (22), showing that both grow exponentially with time when F exceeds unity,
indicating loss of ergodicity. Starting from the formal solution of the OU2 dynamics, equation (15), we
subsequently computed the second and fourth moments of the steady-state positional probability density
function, equations (33) and (38), as well as a necessary condition for the existence of moments of order 2n
in terms of an n-dependent upper bound on F , equation (39). From this condition we inferred an algebraic
asymptotic decay of the positional probability density, with scaling exponent η =−1−F−1. We
subsequently considered two limiting regimes of fast stiffness dynamics: while the naïve adiabatic limit
produced trivial OU dynamics for the slow degree of freedom, the second limit, obtained by taking µ→ µ̃/ϵ2

and Dk → D̃k/ϵ
4 with ϵ→ 0, led to non-trivial coarse grained dynamics for the position involving a

renormalised stiffness and multiplicative noise, equation (42), for which the steady-state probability density
was obtained in closed form, equation (48).

Borrowing from extreme value theory heuristics, we then conjectured that in the presence of finite
stiffness fluctuations, F > 0, the standardised distribution of the running maximum should converge at long
times to a Frechet form with F-dependent exponent, in good agreement with numerical experiments (cf the
standard OU process, whose maximum is Gumbel distributed at long times). Further, the dependence on F
of the mFPT to a positive target was studied numerically and we show that sufficiently strong stiffness
fluctuations can aid the particle by reducing drastically the mean first-passage time to that target. A formal
analytical treatment of this problem remains an intriguing open question and is left for future studies.

Finally, we presented a compact derivation of the steady-state entropy production rate, equation (59),
which calls upon results for the Jarzinsky stochastic work, showing that it depends solely on the second
steady-state moment of the positional probability density. Remarkably, the entropy production diverges for
F > 1/2. It would be interesting to explore higher order statistics of the stochastic work (57), similarly to
what was done in [20, 63] (motivated by experimental findings [18]) for the stochastically sliding potential
and more recently in [64] for an AOU particle confined in a harmonic potential, and to compare any such
result to the full distribution of the stochastic work obtained in [36] for a breathing harmonic potential in
the slow driving regime.

Taken together, our results point to the OU2 process as a widely applicable minimal model of dissipative
confinement. It’s rich phenomenology, emerging from the dynamical establishment of a non-equilibrium
steady-state analogous to that of Brownian motion under stochastic resetting, renders it a valuable
non-motile counterpart to other minimal models of single-particle out-of-equilibrium dynamics, such as the
AOU particle, that have been explored extensively in recent years.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
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Appendix A. Key results for the Ornstein–Uhlenbeck process

In this appendix, we recall some useful key results for the original OU process as described by equation (1).
First, the transition probability P(x, t|x ′, t ′) for the process takes the form

P(x, t|x ′, t ′) =

√
k̄

2πDx

(
1− e−2k̄(t−t ′)

) exp
− k̄

(
x− x ′e−k̄(t−t ′)

)2
2Dx

(
1− e−2k̄(t−t ′)

)
 , (A.1)

where t ′ < t. The steady-state probability density function is thus a Gaussian distribution with zero mean
and variance, ⟨x2⟩= Dx/k̄ [50]. The exponential decay at large x of the steady-state distribution ensures that
all even moments ⟨x2n⟩ are finite for n ∈ Z⩾0, with odd moments vanishing due to the x→−x symmetry.
The associated cumulant generating function then takes the form

K(t) = log⟨eax⟩= a2Dx

2k̄
(A.2)

where cumulants of order 3 and above vanish. The solution x(t) for a given realisation of the noise can be
written as

x(t) =
√
2Dx

ˆ t

−∞
dt ′ ζ (t ′)exp

[
−k̄(t− t ′)

]
, (A.3)

from which we read off the Green’s function for the process G(t) of the form

G (t) = exp
[
−k̄t
]
Θ(t) (A.4)

whereΘ(t) is the Heaviside function.

Appendix B. Convergence criterion for higher moments

In this section, we discuss the derivation of the convergence criterion for moments of order n> 2. Looking at
equation (28), we argue that since the function is finite for all (t1, . . . , tn), any divergence of the integral in the
right-hand side of (26) must be controlled by the behaviour of the integrand in the regime ti →−∞.
Keeping only leading order terms in this limit, we thus rewrite (27) using (28) as

〈
exp

[
−2

n∑
i=1

ˆ t

ti

dt ′i k(t
′
i )

]〉
≃ exp

4Dk

µ2

 n∑
i=1

(t− ti)+ 2
∑
i<j

(
t− tj

)
= exp

[
4Dk

µ2

n∑
i=1

(1+ 2(i− 1))(t− ti)

]
(B.1)

where≃ denotes approximate equality at ti →−∞. Combining this with (26), we argue that the moment of
order 2n converges when the following integral also converges

In =
ˆ

dt1<...<n exp

[
−

n∑
i=1

(
2k̄− 4Dk

µ2
(1+ 2(i− 1))

)
(t− ti)

]
, (B.2)

where
´
dt1<...<n ≡

´ t
−∞ dt1 . . .

´ t
tn−1

dtn. We now define ai = 2k̄− 4Dk[1+ 2(i− 1)]/µ2 and re-write the
integral (B.2) as

In =
ˆ

dt1<...<n

n∏
i=1

e−ai(t−ti). (B.3)

We now call upon the following result for genericm iteratively

ˆ t

tm−1

dtme
−a(t−tm) =

1− e−a(t−tm−1)

a
(B.4)
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to evaluate In up to a multiplicative constant. We integrate over dtn and re-arrange to write

In ∝
ˆ

dt1<...<(n−1)

n−1∏
i=1

e−ai(t−ti)
[
1− e−an(t−tn−1)

]
(B.5)

=

ˆ
dt1<...<(n−1)

n−2∏
i=1

e−ai(t−ti)
[
e−an−1(t−tn−1) − e−(an−1+an)(t−tn−1)

]
. (B.6)

Integrating over tn−1 we subsequently derive

In ∝
ˆ

dt1<...<(n−2)

n−2∏
i=1

e−ai(t−ti)
[
λn−1

(
1− e−an−1(t−tn−2)

)
− 1+ e−(an−1+an)(t−tn−2)

]
∝
ˆ

dt1<...<(n−2)

n−3∏
i=1

e−ai(t−ti)
[
(λn−1 − 1)e−an−2(t−tn−2) −λn−1e

−(an−2+an−1)(t−tn−2)

−e−(an−2+an−1+an)(t−tn−2)
]

(B.7)

where λn+1 = (an−1 + an)/an−1.
Treating the remaining time variables in the same manner, we conclude that the convergence of the

integral In is determined by the positivity of the partial sums Am =
∑m

i=1 ai form= 1 . . .n.More specifically,
the most strict condition is always the positivity of the full sum,m= n, as the sequence {ai} is monotonically
decreasing: ai+1 < ai. The condition for the convergence of the nth moment is thus

0< An =
n∑

i=1

[
2k̄− 4Dk

µ2
(1+ 2(i− 1))

]
= 2k̄n− 4Dk

µ2
n2 =⇒ Dk

µ2
<

k̄

2n
, (B.8)

in agreement with the results obtained in section 4 for the particular cases n= 1 and n= 2.

Appendix C. Homogenisation procedure for coupled dynamics

In this appendix, we first review multiscale methods for the coarse graining of the coupled dynamics of two
stochastic variables with multiple timescales and then apply it to the homogeneisation of the OU2 process.

C.1. General theory
In this section, we follow the treatment of the homogenisation procedure presented in Chapter 11 of [44].
We begin from the most general form for the coupled dynamics of two stochastic processes x(t) and k(t),

ẋ=
1

ε
f0 (x,k)+ f1 (x,k)+α(x,k)ζx (t) (C.1)

k̇=
1

ε2
g(x,k)+

1

ε
β (x,k)ζk (t) (C.2)

where ε> 0 is a dimensionless factor that will be taken to zero to enforce a separation of timescales between
the ‘slow’ x and ‘fast’ k dynamics. Note that both ẋ and k̇ involve fast contributions to the dynamics, but the
dynamics for k are an order of ε faster than those of x. Combining equations (C.1) and (C.2), we construct
the backward Kolmogorov equation for v(x,k, t), which takes the form

∂tv= Lv= 1

ε2

(
g∂kv+

1

2
B∂2

kv

)
+

1

ε
( f0∂xv)+

(
f1∂xv+

1

2
A∂2

xv

)
, (C.3)

where we have defined the diffusivities A(x,y) = α(x,y)ᾱ(x,y) and B(x,y) = β(x,y)β̄(x,y), with •̄ denoting
the conjugate transpose. We write the orderO(ε−2) contribution to the backward Fokker–Planck operator
acting on v as

L−2v≡ g∂kv+
1

2
B∂2

kv. (C.4)

Clearly, L−2w(x) = 0 for any function w(x) that does not depend on k. Additionally, we define ρ∞(k;x) as
the normalised measure obtained by solving the associated steady-state forward Kolmogorov equation for a
fixed value of the slow variable x, L∗

−2ρ
∞(k;x) = 0. For the limit ε→ 0 of this problem to be well-posed, we

18



New J. Phys. 26 (2024) 103016 L Cocconi et al

require that f0(x,k) satisfies the so-called centering condition, namely that its average with respect to ρ∞

vanishes
ˆ

dkf0 (x,k)ρ
∞ (k;x) = 0. (C.5)

We now construct a perturbative solution to equation (C.3) of the form v= v0 + εv1 + ε2v2 +O(ε3).
Matching terms of orderO(ε−2), we conclude that v0(x) is independent of k. AtO(ε−1) and relying on the
centering condition on f 0 introduced above, we find an expression for v1(x,k) in terms of v0(x) and a
function Φ(x,k) which solves

−L−2Φ(x,k) = f0 (x,k) with

ˆ
dk Φ(x,k)ρ∞ (k;x) = 0. (C.6)

Finally, atO(ε0) we derive a closed equation for ∂tv0 from the ergodicity assumption that
´
dkρ∞L−2v2 = 0,

namely

∂tv0 = F(x)∂xv0 +
1

2
A(x)A(x)T ∂2

xv0 (C.7)

where we have defined the vector fields

F(x) =

ˆ
dk (f1 (x,k)+ (∂xΦ(x,k)) f0 (x,k))ρ

∞ (k;x) (C.8)

and

A(x)AT (x) = A1 (x)+
1

2

(
A0 (x)+AT

0 (x)
)
, (C.9)

with

A0 (x) = 2

ˆ
dk f0 (x,k)Φ(x,k)ρ∞ (k;x) (C.10)

A1 (x) =

ˆ
dk A(x,k)ρ∞ (k;x) . (C.11)

The Itô Langevin equation corresponding to the backward Kolmogorov equation (C.7) for v0 constitutes our
slow variable dynamics in the regime ε≪ 1 and reads

ẋ(t) = F(x(t))+A(x(t))ηx (t) . (C.12)

This is the key result that we draw on in section 5, as detailed in the rest of this appendix.

C.2. Homogenisation for OU2 Process
We now discuss the treatment of dynamics on multiple timescales in the specific context of the OU2 process,
equations (2a) and (2b), which we restate for convenience here:

ẋ=−
(
k̄+ k

)
x+

√
2Dxζx (C.13)

k̇=−µk+
√
2Dkζk. (C.14)

C.2.1. Adiabatic limit
First, following section 5.1, we consider a naïve separation of timescales between the two dynamics, akin to
the adiabatic limit in thermodynamics, obtained by introducing a small dimensionless parameter ε via the
rescaling µ→ µ̃/ε2 and Dk → D̃k/ε

2,

ẋ=−
(
k̄+ k

)
x+

√
2Dxζx (C.15)

k̇=− µ̃

ε2
k+

√
2D̃k

ε2
ζk. (C.16)

Comparing these equations with equations (C.1) and (C.2) and matching terms by their order in ε, we
conclude that in this limit f0(x,k) = 0, f1(x,k) =−

(
k̄+ k

)
x and α(x,k) =

√
2Dx, while g(x,k) =−µ̃k and

19



New J. Phys. 26 (2024) 103016 L Cocconi et al

β(x,k) =
√
2D̃k. Employing the procedure outlined in the previous section, it is then straightforward to

verify that F(x) =−k̄x and A(x) =
√
2Dx leading to

ẋ(t) =−k̄x(t)+
√
2Dxζx (t) . (C.17)

In other words, no signature of the coupling between x and k survives in the effective dynamics for the slow
variable x in the limit ε→ 0.

C.2.2. White noise limit
For a non-trivial contribution to appear in the slow dynamics, we subsequently consider a second fast–slow
regime, which we refer to as the white noise limit in section 5.2. This time, we perform the rescaling
µ→ µ̃/ε2 and Dk → D̃k/ε

4, whereby

ẋ=−
(
k̄+ k

)
x+

√
2Dxζx, (C.18)

k̇=− µ̃

ε2
k+

√
2D̃k

ε4
ζk. (C.19)

Now, let χ ≡ εk, such that

ẋ=−1

ε
χx− k̄x+

√
2Dxζx, (C.20)

χ̇=− 1

ε2
µ̃χ +

1

ε

√
2D̃kζk. (C.21)

Comparing once again these equations with equations (C.1) and (C.2), we identify f0(x,χ) =−χx,

f1(x,χ) =−k̄x and α(x,χ) =
√
2Dx, while g(x,χ) =−µ̃χ and β(x,χ) =

√
2D̃k. Following the procedure

outlined above, we find that the effective dynamics for the slow variable x take the form

ẋ(t) =−
(
k̄− Dk

µ2

)
x(t)+

√
2

(
Dx+

Dkx2 (t)

µ2

)
ζx (t) , (C.22)

where we have used that D̃k/µ̃
2 = Dk/µ

2 in this case. We thus recover the effective slow dynamics (42)
studied in the main text.

Appendix D. Connection to the associated Legendre equation

Upon enforcing the separation of timescales detailed in section 5.2, the Fokker–Planck equation (43) for the
marginal distribution of the slow variable x(t) can be mapped on to an associated Legendre differential
equation through a change of variable, which we detail here. Indeed, the marginal steady-state distribution
P(x) is solution to

0=
∂

∂x

{
∂

∂x

[(
Dx+

D̃kx2

µ̃2

)
P(x, t)

]
+

(
k̄− D̃k

µ̃2

)
xP(x, t)

}
. (D.1)

Introducing h≡ D̃k/µ̃
2, we define

P(x) = a0
(
Dx+ hx2

)− 1
4 (1+

k̄
h )Φ(x) , (D.2)

which we substitute into equation (D.1) to obtain

0=

(
1+

h

Dx
x2
)
Φ ′ ′ (x)+

2h

Dx
xΦ ′ (x)+

h+ k̄

4Dx

(
1+

Dx− k̄x2

Dx+ hx2

)
Φ(x) . (D.3)

Finally, we perform the change of variable s= ix
√
h/Dx and derive the equation for Φ(s) with imaginary

argument

0=
(
1− s2

)
Φ ′ ′ (s)− 2sΦ ′ (x)+

[(
k̄

2h
− 1

2

)(
k̄

2h
− 1

2
+ 1

)
−
(
h+ k̄

2h

)2
1

1− s2

]
Φ(s) , (D.4)
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which is now in the form of an associated Legendre differential equation [65]. The formal solution of the
original equation, up to a normalisation factor, is thus

P(x)∝
(
Dx+ hx2

)−µ
2

[
c1P

µ
λ

(
i

√
h

Dx
x

)
+ c2Q

µ
λ

(
i

√
h

Dx
x

)]
(D.5)

where

µ=
k̄+ h

2
and λ=

k̄− h

2
, (D.6)

and Pµλ and Qµ
λ denote the associated Legendre functions of the first and second kind, respectively, which are

precisely the two linearly independent solutions of the Legendre equation.

Appendix E. Derivation of the entropy production rate from the Gibbs-Shannon
entropy

In this appendix, we summarise the full derivation of the entropy production rate Ṡ found in [16]. We begin
from the Fokker–Planck equation for the joint probability distribution for the particle position and stiffness
governed by equation (2):

∂tP(x,k, t) = Dx∂
2
xP+

(
k̄+ k

)
∂x (xP)+Dk∂

2
kP+µ∂k (kP) =−∂xJ(x,k, t)−J (x,k, t) (E.1)

where we have defined the probability currents for the positional and stiffness variables respectively as

J(x,k, t) =−
(
k̄+ k

)
xP−Dx∂xP and J (x,k, t) =−µkP−Dk∂kP. (E.2)

Following the standard approach for the thermodynamic treatment of diffusive systems with fluctuating
potentials [16], we differentiate the Gibbs–Shannon entropy with respect to time to write

Ṡ(t) =−
ˆ

dx

ˆ
dk∂tP(x,k, t) log

(
P(x,k, t)

P̄

)
, (E.3)

where P̄ is an arbitrary constant for dimensional consistency and we work in units such that kB = 1.We
identify two equal and opposite contributions to this rate that we write as

Ṡ(t) = Ṡi (t)+ Ṡe (t) (E.4)

where have defined the internal (or total) entropy production rate

Ṡi (t) =

ˆ
dk

ˆ
dx

1

P(x,k, t)

[
J2 (x,k, t)

Dx
+

J 2 (x,k, t)

Dk

]
(E.5)

and the external entropy production (or entropy flow)

Ṡe (t) =

ˆ
dk

ˆ
dx

(
k̄+ k

)
xJ(x,k, t)

Dx
+

1

Dk

ˆ
dk

ˆ
dxµkJ (x,k, t) . (E.6)

At steady-state, ∂tP= 0 and hence limt→∞ Ṡ(t) vanishes, which implies the steady-state relation
limt→∞ Ṡi(t) =− limt→∞ Ṡe(t). In general, the internal entropy production is the quantity of interest in the
thermodynamic characterization of non-equilibrium stochastic processes. In what follows, we evaluate the
integrals for the external entropy production at steady-state due to their simpler form, then employ the
steady-state relation to evaluate the more classical thermodynamic quantity.

The dynamics for the stiffness are given by the equilibrium OU process, thus at steady-state the current
J (k) =

´
dxJ (x,k) vanishes. Thus the only contribution to Ṡe(t) at steady-state is the first term, that we can

re-write as

lim
t→∞

Ṡe (t) =−
⟨
((
k̄+ k

)
x
)2⟩

Dx
+ k̄, (E.7)

where the average ⟨·⟩ is taken over the joint probability distribution P(x,k).Multiplying the Fokker–Planck
equation by x2, we integrate over x to derive an equation for the dynamics of the marginal variance Ξ(k, t):

∂tΞ(k, t) = 2DxP
tot (k, t)− 2

(
k̄+ k

)
Ξ(k, t)+ ∂k [Dk∂kΞ(k, t)+µkΞ(k, t)] . (E.8)
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Integrating this last equation at steady-state with respect to k leads to ⟨kx2⟩= Dx.
We then multiply (E.8) by k before again integrating over k to obtain

ˆ
dk

[(
k̄+ k

)2
Dx

Ξ(k)

]
= k̄+

1

2Dx

ˆ
dk [Dk∂kΞ(k)+ k∂k [µkΞ(k)]] . (E.9)

Finally, we argue that the second term on the right-hand side of (E.9) equation can be written as

1

2Dx

ˆ
dk
[
Dk∂kΞ(k)+ k∂k

[
µk̄Ξ(k)

]]
=− µ

2Dx

[
⟨
(
k̄+ k

)
x2⟩− k̄⟨x2⟩

]
, (E.10)

noticing that the term proportional to Dk vanishes by imposing a sufficiently fast decay of ∂xP at x→±∞.
Using ⟨(k̄+ k)x2⟩= Dx, we conclude that the internal entropy production rate at steady-state can be
expressed as

lim
t→∞

Ṡi =
µk̄

2Dx

(
⟨x2⟩− Dx

k̄

)
. (E.11)
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