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Diversity of phase transitions and phase separations in active fluids
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Active matter is not only indispensable to our understanding of diverse biological processes, but also provides
a fertile ground for discovering novel physics. Many emergent properties impossible for equilibrium systems
have been demonstrated in active systems. These emergent features include motility-induced phase separation,
a long-ranged ordered (collective motion) phase in two dimensions, and order-disorder phase coexistences
(banding and reverse-banding regimes). Here, we unify these diverse phase transitions and phase coexistences
into a single formulation based on generic hydrodynamic equations for active fluids. We also reveal a novel
comoving coexistence phase and a multicritical point.
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Active matter refers to many-body systems in which
each volume element can generate its own mechanical
stresses [1–3]. As the fluctuation-dissipation relation is bro-
ken at the microscopic level, active matter can be viewed
as an extreme form of far-from-equilibrium systems. Given
the relevance of active matter to nonequilibrium physics and
biophysics, the subject area has been rapidly expanding and
many approaches have been used to study this diverse class
of nonequilibrium, many-body systems. Arguably, the most
generic way to investigate the emergent properties of an ac-
tive matter system is to first formulate a model based solely
on the underlying symmetries and conservation laws of the
system [4].

This is what was done in the case of active fluids—a class
of active matter in which translation invariance holds—in
the seminal work by Toner and Tu [5–8]. Motivated by the
simulation study by Vicsek et al. [9], Toner and Tu pro-
vided the generic equations of motion (EOM) for polar active
fluids and demonstrated the existence of the polar ordered,
or collective motion, phase using a renormalization group
analysis. Subsequently, a coexistence regime consisting of the
ordered and disordered phases was also found, which generi-
cally separates the disordered phase and the ordered phase in
typical polar active fluid models [10–15]. Numerous studies
have also confirmed the Toner-Tu EOM for polar active fluids
using formal coarse-graining strategies that link microscopic
models of self-propelled particles and hydrodynamic level
equations [16–22].
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Concurrently, dense collections of active particles with-
out aligning interactions were shown to spontaneously phase
separate in the presence of purely steric interactions. This phe-
nomenon is now known as motility-induced phase separation
(MIPS) [23]; it was first predicted theoretically and simula-
tionally [24–26], and then experimentally observed [27,28].
Scalar field theories, typically based on the density field of the
particles, have also been formulated to describe this process,
e.g., the so-called Active Model B [29,30]. In terms of sym-
metries and conservation laws, MIPS and polar active fluids
are completely identical. It is therefore natural to view the
emergence of the ordered phase and MIPS as properties of the
same class of active systems. Through scattered efforts, recent
studies have attempted to gain insight into the competition
between Vicsek-like aligning interactions and steric repulsion
in experiments [31] and in models [32–37] of active particles.
Nevertheless, our understanding of the connections between
the emergence of collective motion and phase separation is
still crucially lacking. In this Letter, we elucidate the interplay
between these phenomena; specifically, we unify these diverse
types of phases and phase coexistences in a single formulation
based on generic hydrodynamic EOM for active fluids. In the
process, we also uncover a novel coexistence regime and a
multicritical point.

Conservation law and symmetries.— Our model EOM are
based on the conservation law and symmetries in the sys-
tem. Specifically, mass conservation leads to the continuity
equation

∂tρ + ∇ · J = 0, (1)

where the total flux J = p − η∇ρ is composed of an active
flux p and a gradient term (leading to a diffusive term in the
continuity equation).

For the EOM of the active flux p, following Refs. [5–8], we
impose temporal, translation, rotation, and chiral invariances
to obtain

∂t p + λ(p · ∇)p = μ∇2p − κ (ρ)∇ρ + α(ρ)p − βp2p, (2)
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FIG. 1. Phase coexistence in a one-dimensional active fluid. The mass density ρ (upper panels) and total flux J (lower panels) profiles of
the four distinct types of phase coexistences: (a) a dilute (d) and disordered (D) phase coexisting with a condensed (c) and disordered (D)
phase, denoted as dD-cD; (b) two possible dO-cO coexistences where condensed and dilute phases are transported in the same direction (blue)
or in opposite directions (red); in both cases shown here, the condensed ordered phase is moving to the right as the magnitude of the flux in the
condensed phase |Jc| is higher than that in the dilute phase |Jd|; (c) two examples of dD-cO coexistence, where in both cases, the condensed
ordered phase is moving to the right; and (d) dO-cD coexistence, the condensed disordered phase is here moving to the left due to differential
adsorption at the two interfaces. The profiles shown here correspond to the stationary states of the hydrodynamic EOM. In the lower panels,
the symbols correspond to the symbols shown in Fig. 2. Movies of these cases can be found in the Supplemental Material [38].

where we have only retained the terms crucial to our discus-
sion here. We have also emphasized the density dependency
of the “compressibility” coefficient κ and that of the “order-
disorder” control parameter α in the above equations.

Note that our EOM differ from the Toner-Tu EOM in our
choice of hydrodynamic variables and the imposition of the
diffusive term in the EOM of ρ. Indeed, while ρ describes our
active fluid mass density, p denotes here an active flux and
can only formally be identified with the momentum density
when the diffusive term vanishes (η → 0), in which case our
EOM reduce exactly to the reduced Toner-Tu EOM. The pres-
ence of this diffusive term facilitates our numerical analyses
of the EOM and was commonly adopted in previous stud-
ies [25,33,39,40]. However, since we recover diverse salient
features known in polar active fluids, we are confident that the
findings in our Letter remain valid for generic active fluids as
described by the Toner-Tu EOM. In particular, we show in the
Supplemental Material [38] that our results are qualitatively
unchanged by the presence of the diffusive term.

Diversity of phase separations.— Phase separation occurs
in systems with a conserved quantity. Here, the conserved
quantity is the total mass and so a phase coexistence consists
of one condensed density phase (denoted by c) and one dilute
density phase (denoted by d). At the same time, the Toner-Tu
model allows for two distinct spatially homogeneous phases,
the disordered (D) and the ordered (O) phases, characterized
by whether or not the nonconserved order parameter |〈p〉|
is zero. We therefore generically expect four possible phase
coexistences: (i) dD-cD (i.e., a dilute disordered phase coex-
isting with a condensed disordered phase), (ii) dD-cO, (iii)
dO-cD, and (iv) dO-cO (see Fig. 1). Indeed, three out of these
four coexistences have already been demonstrated: (i) corre-
sponds to MIPS, (ii) corresponds to the banding regime, and
(iii) corresponds to the recently uncovered reverse-banding

regime [41–43]. Type (iv) coexistence still needs to be demon-
strated; here, we first predict analytically and then confirm its
existence numerically (see Fig. 1) in a particular model. To
that end, we will first describe how a generic phase diagram
can be constructed approximately following a linear stability
analysis.

Linear stability and phase separation.— In thermal phase
separation, a linear stability analysis of the dynamical
equation of a phase separating system (e.g., Cahn-Hilliard
equations) can reveal the spinodal decomposition region of the
phase diagram of the system [44]. Furthermore, a signature
of phase separation is that the most unstable mode from the
linear instability analysis corresponds to the k → 0 mode
where k is the wave number. We will use these criteria as
our guiding principles in constructing an approximate phase
diagram for a particular hydrodynamic model. Specifically,
we will perform a linear stability analysis on the EOM and
focus on the k → 0 limit. Furthermore, since in the disordered
phase, the instability has no direction dependency, while in the
ordered phase, the most unstable direction is longitudinal to
the direction of the collective motion, the initial perturbation
in our stability analysis is taken to be along the direction of
the ordered state [18,19]. We note that all known examples
of phases and phase coexistences in polar active fluids can
be qualitatively understood in quasi-one-dimensional (1D)
geometries, from long-ranged collective motion in ordered
homogeneous phases to the one-dimensional bands observed
in phase coexistences. We therefore believe that our one-
dimensional analytic treatment of this problem is sufficient
to capture the nature of phase coexistences in general polar
active fluids, even in higher dimensions.

As an example, in the disordered case (α < 0), we ex-
pand around the homogeneous disordered state with ρ =
ρ0 + δρ exp[st − ikx], p = δp exp[st − ikx], where we have
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arbitrarily chosen the x direction to be the direction of interest.
We note that in the Toner-Tu theory, symmetries generi-
cally allow all the phenomenological coefficients appearing
in Eq. (2) to be functionally dependent on the density ρ. We
thus proceed to Taylor expand κ and α in (2) as follows:

κ (ρ) =
∞∑

i=0

κiδρ
i and α(ρ) =

∞∑
i=0

αiδρ
i. (3)

To linear order, the EOM read

∂tδρ = −∂xδp + η∂2
x δρ,

∂tδp = μ∂2
x δp − κ0∂xδρ − |α0|δp. (4)

Solving for s and focusing on the hydrodynamic limit (k →0),
we have

s =
{−|α0| + (

κ0
|α0| + μ

)
k2 + O(k3),

−(
κ0
|α0| + η

)
k2 + O(k3).

(5)

The first eigenvalue (−|α0|) corresponds to the fast relaxation
when the active flux deviates from the mean-field value p0 =
0 in the absence of spatial variations. The second eigenvalue
quantifies when the instability sets in, which happens when-
ever κ0 + η|α0| becomes negative. Since the system is in the
disordered regime, within this instability region, the system
exhibits dD-cD coexistence as shown in Fig. 1(a).

The analysis in the ordered regime (α > 0) follows the
exact same procedure; the full details of the linear stability
analysis can be found in the Supplemental Material [38].
Here, we just recall that when κ − ηα > 0, the homogeneous
disordered phase will generically be separated from the ho-
mogeneous ordered phase through phase separation. We will
now present a particular model that illustrates the diversity
of phase transitions and phase coexistences possible in active
fluids.

A model with all four phase coexistences.—The linear
stability analysis can be applied straightforwardly once κ (ρ)
and α(ρ) in (2) are explicitly defined. Here, we consider the
following minimal model,

α(ρ) = −A + 18ρ − 10/3ρ2, (6)

κ (ρ) = 140 − 145ρ + 30ρ2, (7)

with η = 2, λ = 1, β = 0.5, and μ = 1. A microscopic-level
(particle based) system that realizes this model could for
instance be a polar active fluid with contact inhibition of
alignment (e.g., as discussed in Ref. [42]) such that its equa-
tion of state dictates that it can also phase separate within the
homogeneous ordered phase.

For large enough values of A, α remains negative, and
so the system remains in the disordered phase. In this case,
instability occurs if (κ − ηα) < 0, and we expect dD-cD co-
existence in this parameter range. On the other hand, as A
decreases, the range of densities ρ for which the system is
in the ordered phase gets wider, and, importantly, is separated
from the disordered phase by two instability regions: A dD-
cO coexistence to the left and a dO-cD coexistence to the
right. Simultaneously, (κ − ηα) remains negative around ρ ∼
2.5. We therefore expect an interesting interplay of distinct
phase separations.

FIG. 2. Phase diagram of a one-dimensional active fluid. The
shaded area corresponds to the instability regime obtained from the
linear stability analysis of the hydrodynamic model (6) and (7).
The edges of the instability region correspond to the spinodal lines.
Black lines correspond to the binodal lines (or coexistence lines),
which were obtained via direct numerical simulations of the one-
dimensional hydrodynamic model in (6) and (7). Along with the
homogeneous disordered (D) and homogeneous ordered (O) phases,
we observe four coexistence regions which are delimited by the
binodal lines (and horizontal dashed lines): A coexistence of a dilute
disordered phase with a condensed disordered phase (dD-cD, blue),
a coexistence of a dilute disordered phase with a condensed ordered
phase (dD-cO, green), a coexistence of a dilute ordered phase with
a condensed disordered phase (dO-cD, red) and a coexistence of
a dilute ordered phase with a condensed ordered phase (dO-cO,
orange). The symbols (and their colors) denote the locations in phase
space from which we extracted the profiles shown in Fig. 1.

In Fig. 2, the instability regions resulting from our linear
stability analysis are shown as the shaded area, while the
homogeneous disordered (D) and ordered (O) regions are
shown in white. We equate the instability region to be within
the phase separating region, but to which of the four possible
types of phase coexistences?

Since the conserved quantity here is the total mass, ρ can
be redistributed as long as the overall density remains the
same. Therefore, we can characterize the phases as follows:
Given any starting point on the phase diagram within the in-
stability region (shaded area in the phase diagram), we extend
a horizontal line from that point; the first homogeneous phase
encountered to the right (respectively, to the left) will describe
the nature of the condensed (respectively, dilute) phase (D
or O).

Using the above construction, we see that this particular
model contains all four variations of the phase coexistences
(Fig. 2). As aforementioned, we report the existence of a phase
coexistence in which both the dilute and condensed phases are
ordered. A priori, these two comoving phases can move either
in the same direction or in opposite directions. By directly
solving the hydrodynamic EOM numerically [38], we find that
both scenarios are possible, as evidenced in the steady-state
profiles shown in Fig. 1(b). Besides this particular model, we
note that a further diversity of phase diagrams is rendered
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possible by varying the specific definitions of α(ρ) and κ (ρ);
we discuss other interesting cases in the Supplemental Mate-
rial [38].

Instability versus phase separation.—The instability region
obtained from a linear stability analysis does not correspond
exactly to the whole phase separation region. Indeed, as
in thermal phase separation, the instability region in fact
corresponds to the spinodal decomposition region, which is
always flanked by the so-called nucleation and growth re-
gions on either side [44,45]. This is no different here: The
actual phase separation boundaries encapsulate the instabil-
ity regions (Fig. 1). Of course, while the phase separation
boundaries (i.e., the binodal lines) for thermal systems in
equilibrium can be obtained by analyzing the free energy, e.g.,
by using the Maxwell tangent method, no free energy exists
in our nonequilibrium systems and so the phase separation
boundaries will instead be given by the appropriate bound-
ary conditions obtained from the stable steady-state solution
of the actual hydrodynamic EOM. This is exactly what we
did to obtain the profiles shown in Fig. 1. Specifically, the
locations of the binodal lines correspond to the density values
of the stationary regions of the condensed and dilute phases
(see Supplemental Material [38] for further details). Finally,
we note that both density and active flux profiles obtained
numerically display a characteristic fore-rear asymmetry with
a steeper fore-front (see Fig. 1). This asymmetry was already
observed and discussed in both simulations of microscopic
Vicsek-like and active Ising spins models, and their contin-
uum counterparts [13,46,47].

A multicritical point.—Besides uncovering the dO-cO co-
existence regime, our analysis also reveals the existence of a
multicritical point pertaining to a potentially new universality
class. To illustrate this (Fig. 3), we consider a polar active fluid
system in which there are two generic parameters K1 and K2

that control the phase behavior of the system. Specifically, the
system undergoes dD-cD phase separation at high K1 while at
small K1 the system is in the ordered phase. In addition, we as-
sume that the second parameter K2 controls the threshold level
K1 at which the distinct phase separations happen (Fig. 3). In
other words, instead of having an additional phase separation
due to a negative κ inside the homogeneous ordered phase
as in the previous example, we have here a dD-cD phase
coexistence in the homogeneous disordered phase instead.

Now, dD-cD phase separation at criticality belongs to the
Ising universality class [48] (but see also Refs. [49,50]). In
terms of our hydrodynamic EOM, this critical point corre-
sponds to having α > 0, κ0 = κ1 = 0 in (3). On the other
hand, the order-disorder critical point that accompanies crit-
ical dD-cO and dO-cD phase separations belongs putatively
to a different universality class (κ > 0, α0 = α1 = 0) [42].
Therefore, by fine tuning κ0, κ1, α0, and α1 to zero (in-
dicated by the yellow ball in Fig. 3), these two distinct
critical points coincide and the resulting multicritical point
is likely to correspond to yet a distinct universality class for
the following reasons: At the linear level around this critical
point, the EOM of the active flux p is completely decoupled
from that of the density field ρ. Specifically, the linear EOM
are

∂tδρ + ∇ · p = η∇2δρ, ∂t p = μ∇2p + f, (8)

FIG. 3. Multicritical point. In this schematic, the dD-cD coex-
istence (or MIPS) occurs above the red surface (at high K1), and the
corresponding critical phase separation (indicated by the red line) be-
longs to the Ising universality class [48] (but see also Refs. [49,50]).
In contrast, an ordered phase coexists with a disordered phase (dD-
cO or dO-cD) between the blue and gray surfaces, and a spatially
homogeneous ordered phase (O) exists below the gray surface. The
corresponding order-disorder critical line is indicated by the blue
line [42]. When the blue line and the red lines are tangent to each
other (indicated by the yellow dot), a putatively novel multicritical
point emerges.

where f is a Gaussian noise term with a nonzero standard de-
viation. The fact that δρ does not feature in the linear EOM of
p is distinct from all known active fluids at the order-disorder
critical transition [42,51–57].

Using the linear theory above, we can also identify some
interesting features of this critical point. To do so, we first
perform the following rescalings:

r �→ e
r , t �→ ez
t, (9)

δρ �→ eχρ
δρ , p �→ eχp
p. (10)

We can then conclude that the following choice of scaling
exponents leave the linear EOM invariant [38]:

z = 2, χp = 2 − d

2
, χρ = 4 − d

2
. (11)

Applying these linear exponents to the generic nonlinear
EOM then indicates that (i) the upper critical dimension dc

is 6 and (ii) the first two nonlinear terms that become relevant
right below dc are δρ2p and ∇(δρ3) in the EOM of p [38].

Summary and outlook.—Starting from generic hydrody-
namic EOM of polar active fluids, we have unified existing
phase transitions and phase separations into a single formu-
lation. In particular, we showed that there are generically
four distinct types of phase separations, and illustrated
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them with a particular model. In doing so, we exhibited a
novel coexistence regime: The coexistence of a dilute or-
dered phase and a condensed ordered phase. We expect that
this phase coexistence will be observed in a microscopic
model of active Brownian particles with steric repulsion and
velocity-alignment interactions. The numerical study of such
a microscopic model and its coarse graining to link mi-
croscopic parameters to the phenomenological coefficients
appearing in our EOM is of great interest and will be the
subject of further studies. Moreover, we also revealed the
existence of a critical behavior pertaining putatively to a new
universality class. Our work highlights the richness of generic
polar active fluid models. The phase behavior can be further

enriched by considering variations in other parameters in the
EOM. For instance, patterns other than phase separation have
been observed when the coefficient μ in the EOM of the mo-
mentum density field (2) becomes negative [58]. We believe
that elucidating these diverse phase behaviors will be a fruitful
research direction in the future.

Note added.—After our paper was submitted, Jentsch and
Lee have used functional renormalization group analysis to
show that the multicritical point uncovered here indeed con-
stitutes a distinct universality class [59].

Acknowledgment. We are grateful to Patrick Jentsch for
correcting a mistake regarding the multicritical point in an
earlier version of the paper.
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