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How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an
extensile nematic at the tissue level? Understanding this seemingly contradictory experimental observation,
which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our
understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-
body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by
using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid
states. Specifically, we show that a collection of microscopic constituents with no inherently nematic
extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces. We
further support our findings by performing cell level simulations of minimal models of confluent tissues.
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A key aim in many-body physics is to connect micro-
scopic dynamics to macroscopic, system-level behavior,
and a fundamental difficulty in this task is that emergent
behavior at the macroscopic level can be very different
from what one would expect from the microscopic picture
[1]. A case in point is planar confluent epithelial tissue
dynamics—while a single motile epithelial cell on a
substrate can exhibit polar dynamics [2,3] and generate
contractile nematic stress when its cell shape is elongated
[4], a confluent monolayer of these cells can instead act
like an extensile nematic [5]. Throughout this Letter, the
nematic tensor field refers to the direction of cell shape
elongation. Intriguingly, this disconnect between the cel-
lular and tissue dynamics is robust and present no matter
whether the tissue is in the liquid or solid states. The cause
of this discrepancy remains poorly understood in both
cases. Resolving the seemingly contradictory behavior at
the single-cell versus the tissue level is not only important
to active matter physics, but is also crucial to a number of
fundamental biological processes. In eukaryotes, extensile
nematic defects have been shown to mediate cell extru-
sions in epithelial monolayers [5] and control the collec-
tive dynamics of neural progenitor cell cultures [6].
In collectives of microorganisms, they are responsible
for initiating layer formation in Myxococcus xanthus
colonies [7], mediating the morphologies of growing
E. coli colonies [8], controlling morphogenesis in
Hydra [9], and increasing collective migration velocities
of Pseudomonas aeruginosa [10].
Naturally, active nematic liquid crystal theories have

become an emerging paradigm for characterizing the
dynamics of these biological systems [6,11–15]. Active
nematic systems are typically characterized by elongated
constituents possessing apolar motility [16], and it is well

established that activity can induce local nematic order
[17–19]. Therefore, it is not surprising that previous studies
focused on the emergence of active nematic defects in these
systems. For example, in Myxococcus xanthus colonies,
individual bacteria are rod shaped and display periodic
reversals of velocity direction prior to fruiting body
formation [20]. Other biological constituents that exhibit
collective nematic behavior usually possess at least one of
these two features, such as the spindle shape of fibroblasts
or the active forces involved in cell division being inher-
ently dipolar [12,21,22]. However, epithelial cells are not
rod shaped and display polar dynamics [2,3], calling into
question whether active nematic liquid crystal theories
capture the fundamental physics of epithelial monolayers.
Recent studies have tried to resolve the discrepancy

between cell-level and tissue-level dynamics in epithelial
tissues [23,24], with one study notably linking polar
activity to extensile active nematic behavior [24].
However, both these studies directly incorporate ad hoc
extensile nematic terms into the equations of motion
(EOM), either in the deterministic part [23] or in the
fluctuation part [24]. Doing so begs the following question:
Are we missing key microscopic, cell-level ingredients to
justify these terms? In this Letter, we refute this need by
showing, analytically and by simulation, that polar fluctu-
ations (due to cell-substrate interactions) generically lead to
extensile nematic behavior in a confluent tissue, in both
liquid and solid states. Our conclusion applies universally
in the small fluctuation limits when active contractile
nematic stresses are absent in the system. When contractile
stresses are switched on at the cellular level (due to cellular
contractility and cell-cell interactions [25]), the nematic
nature of the confluent tissue can be either extensile or
contractile depending on, e.g., the relative strengths of the
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polar fluctuations and the fluctuations of the active
nematic stresses.
In the following, we will first analyze a generic set of

linearized EOM describing the velocity and nematic fields
(characterizing the direction of the cell shape elongation) of
confluent cell tissues, and then illustrate our findings by
simulating confluent tissues in the liquid and solid states
using an active vertex model [26,27].
Analytical argument.—We first consider a generic model

of 2D confluent cell tissue in the liquid state. Consistent
with previous studies, we will treat confluent tissues with
polar fluctuations as an incompressible active fluid on a
frictional substrate [28–31], in which the polar fluctuations
originate from cell-substrate interactions; we ignore
thermal fluctuations as they are negligible in cellular and
tissue dynamics. To capture the coarse-grained cell shape
anisotropy, we use the nematic tensor fieldQ¼Sð2n̂n̂−1Þ,
where S is the scalar nematic order parameter and n̂ is the
local coarse-grained unit director that corresponds to the
elongated direction of the cell [32].
Motivated by in vitro experimental studies on epithelial

tissues, we focus on the regime without long-range order in
the velocity field v [31] or quasi-long-range order in the
nematic field Q [36–38], and away from the order-disorder
critical region [39]. While we do not expect the system to
develop any hydrodynamic soft modes in this regime, it is
still of interest to use the hydrodynamic equations to study
the system at length scales beyond the microscopic
(cellular) length scale. In the small fluctuations regime,
the magnitudes of both v and Q are small and thus the
linearized EOM are expected to apply universally; these are
of the form

∂tv ¼ μ∇2v − ∇P − Γv þ α∇ ·Qþ ξ; ð1aÞ

∂tQ ¼ λ½∇v þ ð∇vÞT� þD∇2Q − ηQ; ð1bÞ

where the polar fluctuations ξ, originating from cell-
substrate interactions such as transient lamellipodia activity
[3,25], are represented by a Gaussian white noise with

hξiðt; rÞi ¼ 0;

hξiðt; rÞξjðt0; r0Þi ¼ 2Δδijδðt − t0Þδ2ðr − r0Þ: ð2Þ

Indeed, while the cells’ polar fluctuations typically display
some persistency, in the hydrodynamic limit (i.e., at long
enough time and length scales), this persistency is irrel-
evant and these fluctuations can be described as
δ-correlated noise terms as in Eq. (2). This is akin to
systems of self-propelled particles being described by the
Toner-Tu equations in the hydrodynamic limit [28,29,40].
The “pressure” P in Eq. (1a) acts as a Lagrange multiplier
here to enforce the incompressibility condition ∇ · v ¼ 0.
Further, we have included an active nematic term, α∇ ·Q,
in the EOM of v (1a), and the diffusivity parameter D is

proportional to the nematic stiffness (in the one-elastic
constant approximation) [24,41].
Wewill focus first on the case of passive nematics [α ¼ 0

in Eq. (1a)]. In the highly damped limits (large Γ and η), we
can set both temporal derivatives in Eq. (1) to zero. In this
regime, applying a divergence to Eq. (1b) leads to

ðη −D∇2Þ∇ ·Q ¼ λ∇2v: ð3Þ

In Fourier transformed space, we have

ikjQ̃ij ¼ −
λk2ṽi

ηþDk2
; ð4Þ

where we have used Einstein’s summation convention.
To ascertain the extensile or contractile nature of the

nematic field, we calculate the equal-time, equal-position
correlation hv · ð∇ ·QÞi. The motivation behind doing so is
that an active nematic material is usually characterized as
extensile or contractile by the sign of the coefficient α in
front of the active nematic term α∇ ·Q when present.
Focusing on Eq. (1a) and ignoring all spatial and temporal
variations, it is clear that the sign of α is the same as that
of the correlation hv · ð∇ ·QÞi. Therefore, even if α ¼ 0,
calculating such a correlation enables us to ascertain
effectively the extensile or contractile nature of the nematic
field under the system’s dynamics.
The correlation is given by [32]

hv · ð∇ ·QÞi ¼ −2λΔ
Z

d2k
ð2πÞ2

k2

ðDk2 þ ηÞðμk2 þ ΓÞ2 : ð5Þ

The integral above is always positive (in fact, it equals
[(DΓþ μηflog½μη=ðDΓÞ� − 1g)=(4πμðDΓ − μηÞ2)] when
integrating over all wavelength k). Therefore, the correla-
tion between v and ∇ ·Q depends only on the sign of λ.
Specifically, the nematic field is statistically extensile if
λ > 0, and contractile if λ < 0. In the case of confluent cell
tissues, it is clear that a positive velocity gradient will cause
a cell to stretch in the direction of that gradient. Hence, λ is
positive and thus statistically, the velocity field is negatively
correlated with the divergence of the nematic field. In other
words, a polar fluctuation in confluent cell tissues will
generically lead to the appearance of active extensile
nematics. In Ref. [32], we show that this conclusion can in
fact be generalized to compressible tissues in the fluid state.
However, active contractile nematic behavior in cell

tissues has also been observed experimentally, e.g., in
fibroblasts cells [13,42]. In the context of active nematics,
one can recover this behavior by setting α > 0 in Eq. (1a).
Additionally, since the nematic field Q can now generate
active stresses, fluctuations in the EOM of Q are also
generically present. Specifically, one needs to include a
Gaussian noise term Ω on the r.h.s. of Eq. (1b), with
statistics given by
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hΩijðt; rÞi ¼ 0; ð6aÞ

hΩijðt; rÞΩklðt0; r0Þi ¼ 2ΔQδðt − t0Þδ2ðr − r0Þϵijkl; ð6bÞ

where, for symmetry reasons,

ϵijkl ¼
1

2
ðδikδjl þ δilδjk − δijδklÞ: ð7Þ

Repeating the analysis with the terms α∇ ·Q and Ω
added to Eqs. (1a) and (1b), respectively, we find that the
correlation hv · ð∇ ·QÞi now takes the following form

hv · ð∇ ·QÞi ¼
Z

d2k
ð2πÞ2ðDk2 þ ηÞ

�
−2λΔk2GðkÞ2

þ αΔQk2
�

GðkÞ
Dk2 þ η

−
αλk2GðkÞ2
ðDk2 þ ηÞ2

��
; ð8Þ

where GðkÞ ¼ fμk2 þ Γþ ½λαk2=ðDk2 þ ηÞ�g−1 (see
Ref. [32] for details). Note that in the case where α ¼ 0,
one naturally recovers the expression in Eq. (5). For
positive α and λ, the terms in the square bracket in the
integral (8) are always positive overall [32]. Hence, the
system can transition from exhibiting extensile nematic
behavior to contractile nematic behavior when the terms in
the square bracket dominate over the first one. In particular,
this transition happens when the dimensionless ratio
αΔQ=λΔ is much greater than 1 [32].
We note here that our results so far are qualitatively and

quantitatively different from a recent work on the same
topic [24] in the following ways: (i) both the active stress
term (∝ α) and fluctuations in Q are crucial for the
extensile-contractile transition in our work [since it is
the product αΔQ that appears in the correlation (8)], (ii) we
do not assume that the nematic field influences the polar
fluctuations, and (iii) nonlinear advective coupling is not
needed in our treatment. Indeed, while nonlinear effects
may be crucial in the high fluctuation limits, it remains
unclear how to gauge the importance of a particular
nonlinear term in relations to (many) other nonlinear terms
that are intrinsically present in the EOM. In the present
theory, nonlinear effects are not relevant since we focus
exclusively on the small fluctuation limits.
Having established the expected extensile nematic

behavior in confluent tissues in the liquid state, we now
repeat the analysis in the solid state, again in the highly
damped limits. Here, the relevant hydrodynamic variables
are the displacement field u from the stress-free configu-
ration, as well as the velocity field v and the passive
nematic field Q. The linear EOM in this case read [43]

Γv ¼ A∇2uþ B∇ð∇ · uÞ þ ξ; ð9aÞ

ηQ ¼ C½∇uþ ð∇uÞT� þ λ½∇v þ ð∇vÞT� þD∇2Q; ð9bÞ

where the constants A and B are the shear modulus and bulk
modulus of the material, respectively, both of which are
positive [43], and ξ is a polar fluctuation term again given
by Eq. (2). The coupling constant C between the strain and
nematic fields leads to the development of strain anisotropy
either parallel (C > 0) or perpendicular (C < 0) to Q [44].
We expect it to be positive for the same reason—outlined
previously—that we expect λ to be positive, although the
sign does not affect our result. We can now analyze Eq. (9)
following a similar procedure [32] as in the liquid case to
conclude that polar fluctuations in the solid state generi-
cally lead to extensile nematic dynamics in cell shapes.
Simulation results.—To validate our analytical results,

we perform simulations on a cell-based model of confluent
tissues in both liquid and solid states [45]. Vertex based
models represent an important class of models which have
successfully reproduced several experimental observations
[26,46–48]. Therefore, we use the active vertex model
(AVM) to explore the dynamics of the tissue in both solid
and liquid states. As in previous studies, we focus on the
dynamics of þ1=2 defects to determine the extensile or
contractile nature of the nematic field [49].
We implement an AVM following Ref. [27]. We re-

present the monolayer as a tiling of polygons; the cell
vertices are the degrees of freedom in this model, and each
cell is endowed with a self-propulsive motile force (Fig. 1).
In addition to self-propulsion, vertices move in response to
mechanical interactions stemming from the following
effective tissue energy function

E ¼
XN
a¼1

KAðAa − A0Þ2 þ KPðPa − P0Þ2; ð10Þ

where N is the number of cells, KA and KP are the area and
perimeter moduli, Aa and Pa are the area and perimeter of
cell a, and A0 and P0 are the target area and perimeter
common to all cells. The first term in Eq. (10) is quadratic

FIG. 1. Schematic of the active vertex model (AVM). The
degrees of freedom are the cell vertices (black dots). Each
vertex experiences two types of forces, an active force from
cellular self-propulsion, fi (red arrow), which is the mean self-
propulsive force from the 3 cells that neighbor each vertex (blue
arrows), and the mechanical response of the tissue to this
driving, Fi (black arrow).
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in the cell areas and encodes a combination of cell volume
incompressibility and the monolayer’s resistance to height
fluctuations. The second term in the energy function is
quadratic in the perimeter of the cells and encodes a
competition between the contractility of the actomyosin
cortex and cell membrane tension from cell-cell adhesion
and cortical tension. The interaction force on vertex m is
then Fm ¼ −∇mE.
The AVM undergoes a rigidity transition that is con-

trolled by the target shape index p0 ¼ P0=
ffiffiffiffiffi
A0

p
[50]. In

passive systems, this transition occurs at p0 ¼ p�
0 ≈ 3.81,

although this decreases with increasing active motility [26].
Above this critical value of p�

0 there are no energy barriers
to cell rearrangements and the cell layer enters a liquidlike
phase, rearranging via T1 transitions. We thus choose
values of p0 and active mobility strength to ensure p0 <
p�
0 for our solid simulation and p0 > p�

0 for our liquid
simulation.
To model cell motility, each cell is endowed with a self-

propulsion force of constant magnitude, f0. This self-
propulsion force acts along a polarity vector, n̂a ¼
ðcos θa; sin θaÞ, where θa is an angle measured from the
x axis. The resultant self-propulsion force on each vertex is
the average self-propulsion force of the three cells that
neighbor vertexm, fm ¼ ðf0=3Þ

P
a∈N ðmÞ n̂a, whereN ðmÞ

denotes the list of cells that share vertex m. Assuming
overdamped dynamics, the EOM for each vertex, with
position rm, is

drm
dt

¼ 1

ζ
ðFm þ fmÞ; ð11Þ

where ζ is the damping coefficient. Finally, the polarity
vector of each cell also undergoes rotational diffusion
according to

dθa
dt

¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξaðtÞ; ð12Þ

whereDr is the rotational diffusion coefficient and ξaðtÞ is a
white noise process with zeromean and unit variance. In both
liquid and solid states, we present results for monolayers of
400 cells on a periodic domain with uniformly distributed
initial polarities. The AVM only explicitly includes polar
active forces, meaning it is comparable to our analytical
model without the inclusion of active contractility. Therefore,
extensile behavior is expected universally.
Following Refs. [5] and [42], we compute the instanta-

neous cell orientation field and implement a defect detec-
tion algorithm [32]. Despite its simplicity, we observe that
the AVM, in both solid and liquid states, displays �1=2
defects generated randomly within the tissue in a similar
manner to those observed in epithelial layers in vitro [5]
[Figs. 2(a)–2(d), left]. Upon computing mean properties of
the tissue around these defects, we observe velocity fields

indicative of extensile active nematic behavior, with the
+1/2 defect moving in a tail to head direction [Figs. 2(a)
and 2(c), middle] [49]. We also show the mean passive
isotropic stress due to cell-cell interactions in Figs. 2(a)–2(d),
(right). We note that the only type of topological defects
consistently observed were defects with half-integer charges.
Further, the extensile behavior is apparent over a range of
stiffnesses and activities, and collective contractile behavior
was never seen over the parameter ranges explored.
Additionally, we numerically determine the correlation
calculated in our analytical model [32]. We find that, for
both solid and liquid states, the numerical correlation is
always negative overall. Overall, our simulation results fully
support our analytical findings.
Discussion and outlook.—We demonstrate analytically

that planar confluent tissues with polar fluctuations lead

(c)

(a)

(b)

(d)

FIG. 2. Simulation results of confluent tissues in their liquid
[(a) and (b)] and solid [(c) and (d)] states. Nematic configurations,
dynamics, and passive stress fields around detected þ1=2 defects
in the (a) liquid state and (c) solid state, and those of detected
−1=2 defects in the (b) liquid state and (d) solid state. In each
case, we show representative defects (left), mean velocity fields
around defects (middle), and heat maps of mean isotropic passive
stress ðσxx þ σyyÞ=2 due to cell-cell interactions around defects
(right). Heat maps have been normalized such that blue represents
maximum compression and yellow maximum tension. We use
A0 ¼ 1, KA ¼ 1, KP ¼ 1, f0 ¼ 0.5, and Dr ¼ 1. In the liquid
state we use P0 ¼ 3.7 and in the solid state P0 ¼ 3.4. See the
Supplemental Material for details of simulation procedures and
defect detection methodology [32].
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generically to extensile nematic behavior with regards to
cell shape orientation. In contrast to previous studies, our
analysis does not require the addition of ad hoc extensile
nematic terms [8,23,24]. Further, our analytical treatment
applies universally in the small fluctuation regime and thus
elucidates how extensile behavior can emerge even though
contractile nematic stresses are prevalent at the cellular
scale. We confirm all our findings by simulating models of
confluent tissues in both liquid and solid states.
We note that a recent joint experimental and theoretical

work investigating the switch from contractile cells to
extensile tissues concluded that the extensile behavior of
epithelial tissues may come from strong intercellular
interactions mediated by cadherins [42]. Our result here
is consistent with their findings if stronger intercellular
interactions lead to a reduction in the fluctuations or
strength of the active nematic contractility due to the
increased rigidity at the cellular level. Additionally, a
recent study has found that cadherin-mediated cell-cell
contacts support the formation of cryptic lamellipodia [51],
meaning stronger intercellular interactions could also
facilitate stronger polar traction forces.
Finally, since our main motivation comes from experi-

ments, we focus here exclusively on confluent tissues,
however, we expect our theory to apply equally to many-
body systems of deformable particles or elongated particles.
Indeed, we argue that our results could explain the pre-
viously unresolved extensile motion of +1/2 defects seen in
2D layers of rod-shaped molecules on a vibrating substrate
[52]. Other interesting future directions include the inves-
tigation of the dynamics of cell shapes in the ordered regimes
[31,53] and close to the order-disorder critical regime [39].
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