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Population growth is a fundamental process in ecology, evolution, and epidemiology. The popula-
tion size dynamics during growth are often described by deterministic equations derived from kinetic
models. Here, we simulate several population growth models and compare the size averaged over
many stochastic realizations with the deterministic predictions. We show that these deterministic
equations are generically bad predictors of the average stochastic population dynamics. Specifically,
deterministic predictions overestimate the simulated population sizes, especially those of popula-
tions starting with a small number of individuals. Describing population growth as a stochastic
birth process, we prove that the discrepancy between deterministic predictions and simulated data
is due to unclosed-moment dynamics. In other words, the deterministic approach does not take into
account the variability of birth times, which is particularly important at small population sizes. We
evaluate different moment-closure approximations and show that they do not satisfactorily reduce
the error between analytical predictions and simulated data. We present two novel solutions to
the stochastic growth dynamics, one of which applies to any population growth model. We show
that our solution exactly quantifies the dynamics of a community composed of different strains and
correctly predicts the fixation probability of a strain in a serial dilution experiment. Our work sets
the foundations for a more faithful modeling of community dynamics. It provides tools for a more
accurate analysis of experimental results, including the inference of important growth parameters.

1. INTRODUCTION

Population growth is at the heart of fundamental
processes in cell biology, evolution, ecology, and epi-
demiology, from the expansion of bacteria colonies and
large-scale animal populations to the spread of an in-
fectious disease or the propagation of an advantageous
mutation. Predicting population growth dynamics is
thus paramount in ecology and controlling the spread
of infections. Indeed, in the context of epidemiologi-
cal modeling, understanding the transiently increasing
and steady-state size of the infected population can
help us devise strategies to control population growth
and mitigate its spread. The outspoken goal of popu-
lation modeling is to accurately describe the variation
in the number of individuals in a population.

Historically, deterministic models are most com-
monly used to describe population dynamics [1–3]. In
these models, the population size is generically de-
scribed by a continuous variable whose temporal dy-
namics are governed by an ordinary differential equa-
tion. Whereas most of these models are nonlinear—
which means that analytical progress is not impos-
sible but limited in some cases [4]—it is often rela-
tively simple and computationally fast to obtain ac-
curate numerical solutions, possibly explaining their
widespread use. In theoretical ecology, a paradig-
matic model of population growth is the well-known
logistic equation whose study traces back to as early
as the middle of the nineteenth century [5]. The lo-
gistic differential equation was initially derived from
introducing a self-limiting property in the growth of
a biological population to the unconstrained Malthu-
sian exponential growth model [6] and was rediscov-
ered independently later on [7–9]. The derivation of
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Verhulst’s logistic growth model stemmed from the
observation that unhindered exponential population
growth is unrealistic because even in the absence of
predation relations, intraspecies competition for envi-
ronmental resources such as food or habitat will lead
to a characteristic saturation level, an upper bound
on the population size known as the carrying capacity.
Owing to its ease of use, the simplest logistic growth
was used to model biological systems at all scales from
the population growth of micro-organisms [10, 11] to
that of large mammal herds [12] and fish schools [13].

Further refinements to the logistic growth func-
tion led to the development of a generalized logistic
growth model [4], which captures several commonly
used population growth models including Blumberg
[14], Richards [15] and Gompertz [16] growth models.
Whereas amenable to easy progress and qualitative
predictions, these deterministic models are not en-
tirely faithful to the growth of a real population which
is inherently stochastic [17, 18]. This stochasticity
results from both intrinsic (e.g., demography) and
extrinsic (e.g., environmental change) noise [19, 20].
More recent studies have shown that deterministic and
stochastic approaches yield critically different results
[21–24]. Although it was long considered that the
dynamics of a large volume stochastic system could
be well described by deterministic equations [25], it
is now clear that this criterion alone is not sufficient
[26]. The range of validity of deterministic models is
put in question. Even if new conditions for a deter-
ministic equation to describe well the stochastic dy-
namics of a population have been outlined [26], they
are not exhaustive and quantitative methods to over-
come this discrepancy are missing. Recognizing these
limitations, stochastic models have proved helpful in
epidemiology and ecology for the past decades [27–36].

Many studies use deterministic equations to fit ex-
perimental or empirical data and estimate essential
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Table 1. Population growth models — List of specific population growth models used with their associated exponents
and population birth rates BN . These are derived from the generalized logistic growth model introduced in equation (1).
The exponents α, β and γ allow tuning the symmetry, maximum and inflection of the population growth rate BN (see
figure 1). Birth rate, population size, and carrying capacity are denoted by b, N , and K, respectively.

Exponential Logistic Blumberg Richards Gompertz*

α = 1 α = 1 α α = 1 α = 1

β = 0 β = 1 β = 1 β β → 0

γ = 0 γ = 1 γ γ = 1 γ = 1

BN = bN BN = bN(1−N/K) BN = bNα(1−N/K)γ BN = bN
(
1− (N/K)β

)
BN = bN log(K/N)

* The generalized logistic growth model converges to the Gompertz model when the per capita growth rate is divided by β and
the limit β → 0 is taken (see [4] for details).

biological and environmental parameters. Logistic
growth models have recently been used in microbiol-
ogy [37, 38] as well as in epidemiology, e.g., to model
the Covid-19 pandemic [39, 40]. In the latter example,
several studies used logistic-like equations to estimate
the basic reproductive number of a virus during an
outbreak [41–44], whereas others used compartmen-
tal models such as SEIR [45–47]. In both cases, a
prediction based on deterministic models carries the
risk of poorly estimating parameters of interest, such
as the reproductive number, crucial to implementing
political measures to slow down the disease’s spread.
Identifying when a deterministic equation does not de-
scribe well the average dynamics of stochastic popu-
lation growth, understanding the reasons for this dis-
agreement, and proposing solutions to remedy it, is
thus of paramount importance.

In this work, we leap forward by solving the stochas-
tic dynamics of population growth in the absence of
deaths analytically. This resolution allows us to iden-
tify the extent to which a deterministic approach is
a good approximation of the growth dynamics and
to lay the foundation for future inference methods of
growth parameters. We consider several classical pop-
ulation growth models. First, we model the popula-
tion growth as a stochastic birth process and simulate
stochastic realizations of these kinetics. We compare
their ensemble average to the predictions of the re-
spective deterministic models. We show that the de-
terministic approach generically overestimates the av-
erage population size; this error in prediction is shown
to be larger when the initial number of individuals is
very low. To explain the reason behind this discrep-
ancy, we derive a master equation formalism describ-
ing the stochastic population growth dynamics and
the moment equations. We find that the difference
between the population size estimated by the deter-
ministic equation and the mean of the simulated data
is due to unclosed moment dynamics. We show that
some moment-closure approximations greatly reduce
the difference, which remains globally significant. In-
stead, we derive an exact solution to the stochastic
population growth. Finally, we apply our results and
show that our solution leads to a better prediction of
the dynamics of two competing strains and the prob-
ability of fixation of a mutant in a serial passage ex-
periment.

2. BIAS OF DETERMINISTIC APPROACHES

2.1. Pure-birth models

Given the inherent stochasticity of population
growth processes, we first establish whether a deter-
ministic equation correctly describes the mean trajec-
tory of stochastic growth. We consider four distinct
growth models belonging to the generalized logistic
growth models: Blumberg, Gompertz, Logistic, and
Richards models [4]. Our choice was motivated by
their widespread use to fit experimental or empirical
data to estimate growth parameters in microbiology
and ecological communities [38, 48, 49]. These kinetic
models differ by their per capita growth rates, bN .

Under Malthusian growth, the per capita growth
rate is constant and independent of the population size
N ; we denote as b this intrinsic birth rate—also called
exponential birth rate or Malthusian parameter. Note
that simple unbounded exponential growth would oc-
cur if no restrictions were imposed on the population
size (e.g., nutrients, available space). In the growth
models considered here, the per capita growth rate
is explicitly dependent on the population size. To
model environmental constraints such as availability
of space or food, one then generically introduces a
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Figure 1. Different growth models display different
population birth rates. Vertical dashed lines show the
location of the optimal birth rate for each model. Param-
eter values: carrying capacity K = 100, birth rate b = 1,
exponents α = 1, β = 2 and γ = 1.5.
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Figure 2. Solutions obtained from deterministic models fail to predict the mean stochastic population
size. (a) Population size N versus time t for different growth models. The data points show simulated data averaged
over 104 stochastic realizations. The solid lines correspond to the numerical resolution of the deterministic models (see
equation (1)). (b) Relative error η versus time t for different growth models calculated using data from (a). The vertical
dashed lines represent the inflection times at which d2N/dt2 = 0 or equivalently when the population growth rate reaches
a maximum. (c) Relative error η versus time t for different initial population sizes N0 for the Logistic model. The data
points show simulated data averaged over 105 stochastic realizations. The vertical dashed lines represent the inflection
times. Parameter values: carrying capacity K = 100, initial population size N0 = 1 (in (a) and (b)), birth rate b = 1,
exponents α = 1, β = 2 and γ = 1.5.

carrying capacity K that limits the population size N
to the range N0 ≤ N ≤ K assuming no deaths, where
N0 is the initial population size. Specifically, as the
population size increases, the per capita birth rate bN
decreases to vanish when N = K.

For a general Logistic growth model, the determin-
istic equation describing the dynamics of N reads

dN

dt
= BN = bNα

[
1−

(
N

K

)β]γ
, (1)

where BN denotes the population growth rate. For
simplicity, we consider the case α = 1, but our re-
sults stand in the more general case. The population
growth rates for each of the four nonlinear models con-
sidered here are provided in table 1 along with those
of the exponential growth model.

As seen in figure 1, the four population growth mod-
els chosen here display very different birth rate curves.
Birth rates in all models are non-monotonic and van-
ish when N → 0 and N → K by construction. In
other words, these models impose that a population
of size zero cannot grow, and no population can grow
beyond the carrying capacity. We note that the Logis-
tic model displays a symmetry around the population
size N = K/2, whereas in both the Blumberg and
Richards models, the exponents β and γ, respectively,
offer an extra degree of freedom to tune the shape of
the growth rate curve and in particular, its asymme-
try. We note that the population size at inflection,
i.e., when the population growth rate is maximum, is
given by

N∗ = K

(
1 +

βγ

α

)−1/β

, (2)

and is thus dependent on exponents β and γ for the
Blumberg and Richards models, respectively. The
Gompertz model shows the fastest growth of all at
small population sizes. As shown in figure 2(a), the
population size in all deterministic models follows a
sigmoid curve—also called an S-shape curve—with its

characteristic initial phase with slow growth, exponen-
tial growth phase, finally followed by a stabilization of
the population size at a finite steady-state population
size

lim
t→∞

N(t) = K . (3)

For the Logistic, Richards, and Gompertz models,
full analytical solutions are available [4]. These are
given by

NL(t) =
K

1 + (K/N0 − 1) e−bt
, (4a)

NR(t) =
K[

1 +
(

(K/N0)
β − 1

)
e−βbt

]1/β , (4b)

NG(t) = K(N0/K)e
−bt

. (4c)

Those are represented in figure 2(a). Note that no ana-
lytical (i.e., closed-form) solution exists for the Blum-
berg model; in this last case, we proceeded with a
direct numerical solution of equation (1).

However, as pointed out earlier, population growth
is inherently stochastic. We, therefore, evaluated the
validity range of the above deterministic descriptions
by simulating individual stochastic trajectories for the
four growth models introduced above using a Gillespie
algorithm [50, 51] [see electronic supplementary mate-
rial (ESM)]. To this end, we recast our problem into a
pure-birth process for which population growth results
from an individual A reproducing at size-dependent
rate bN following the elementary reaction

A
bN−−→ 2A , (5)

with BN = bN × N . Naturally, multiple stochastic
models may lead to the same deterministic model un-
der a mean-field approximation. Here, we focus on one
particular microscopic scenario. Still, as we will ar-
gue in the next section, other formulations, including
those where birth and death processes are taken into
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account explicitly, lead to even more drastic disagree-
ment. We average all our results over 105 independent
stochastic trajectories to obtain the time-dependent
average population size.

As shown in figure 2(a), we observe a significant
difference between the deterministic predictions and
the stochastic mean population size starting from a
single individual. To quantify this disagreement, we
calculated the relative error η defined as

η(t) =
Nd(t)−Ns(t)

Ns(t)
, (6)

where Nd(t) and Ns(t) are respectively the time-
dependent population sizes predicted by the deter-
ministic model and measured in our stochastic sim-
ulations. We observed relative errors as large as 30%
independent of the carrying capacity (see ESM, figure
S2). Figure 2(b) shows that the largest error for the
parameters chosen is obtained for the Richards model,
whereas the smallest is for the Gompertz model (still
at a substantial max(η) ≈ 12%). We note that the
quantitative value of the relative errors measured for
the Blumberg and Richards models depend on the
choice of exponents β and γ, respectively. Never-
theless, the measured errors remain significant over
a wide range of exponents (see ESM, figure S1). For
all the growth models studied here, the determinis-
tic dynamics given by equation (1) overestimates the
population size at all times. It is interesting to note
that the maximum error is located around the inflec-
tion point (i.e., at t such that d2N/dt2 = 0) predicted
by the deterministic equation; we note that this cor-
responds to the population size where the population
birth rate reaches its maximum and starts decreasing.

Furthermore, we observe that the error uniformly
decreases as N0, the initial number of individuals in
the population, increases (see figure 2(c)). This dis-
crepancy limits the range of validity of the determin-
istic models as the initial number of individuals in
the population is assumed to be small in many appli-
cations, e.g., patient zero in a disease spreading sce-
nario, single cell mutation in a mutation fixation ex-
periment, small number of cells in a bacterial colony
expansion, etc. To summarize, the deterministic equa-
tion fails to describe the average stochastic trajectory.
Although the relative error depends on the specific
growth model, and thus on the per capita birth rate,
it remains significant in all cases tested and increases
with decreasing initial population size. Importantly,
the relative error between deterministic predictions
and measured mean stochastic population size is in-
dependent of the carrying capacity. Thus the discrep-
ancy does not vanish in the limit of large population
sizes as is commonly assumed (see ESM, figure S2).

Stochastic population growth is a Poissonian jump
process. Therefore, the times between jumps from size
N to N +1 are exponentially distributed with param-
eter BN . For small initial population sizes N0, the
rates at which the population initially grows are low
(see figure 1), e.g., the rate of the first reproduction is

given by bN0

[
1− (N0/K)β

]γ
for the generalized lo-

gistic model. In turn, this implies that early in the
process, the distributions of reproduction times are

heavy-tailed, leading to a large variance in the pop-
ulation size consistent with observations from single-
cell experiments [52–56]. We postulate that this large
variance accumulated over the growth process is re-
sponsible for the disagreement between the determin-
istic and the mean stochastic trajectories; this is in
particular consistent with our observations that: (1)
the relative error increases when the initial popula-
tion size decreases and (2) the relative error is maxi-
mal around the inflection point where the exponential
distribution of reproduction times is the tightest. In-
terestingly, when K → ∞ (large volume limit), the
rate of first reproduction converges to bN0 and so is
entirely controlled by the initial population size con-
firming that the observed disagreement remains valid
in this limit. Finally, we note that the above deter-
ministic models are mean-field models which intrinsi-
cally assume an underlying population size distribu-
tion peaked around its mean in contrast to the wide
population size distributions observed in the stochas-
tic models.

2.2. Birth-death processes

In the previous section, we focused on populations
that can only increase in size over time. This assump-
tion, which entails neglecting the death of individu-
als, is predominant in microbiology, where the models
used to fit population growth data do not explicitly
include death rates [37, 38, 57]. Similarly, pharma-
codynamic models, which aim at quantifying how an-
tibiotics inhibit growth or kill cells, commonly replace
the birth rate with a net birth rate (i.e., birth rate
minus death rate) in equation (1) [58, 59]. In this
way, the population grows if the net birth rate is pos-
itive, decreases if it is negative, and remains constant
for zero net growth rates. However, stochastic pop-
ulation growth can also be modeled as a Poissonian
Markov jump process where births and deaths are dis-
tinct events leading to distinct changes in population
size: N → N + 1 and N → N − 1, respectively.

We do not expect deterministic models to be fair
better in the presence of explicit death events with
small initial population sizes. For the sake of sim-
plicity and without loss of generality, we add to equa-
tion (1) a linear death term leading to the modified dif-

ferential equation dN/dt = bNα
[
1− (N/K)

β
]γ
−dN .

We further simulate a stochastic birth-death process
known to lead to this deterministic equation in the
mean-field limit using once again a Gillespie algorithm
[50, 51]. Not only do we expect a deterministic ap-
proach to fail to describe the dynamics of the average
population growth over a large number of stochastic
realizations as in the death-free case but we show that
strikingly it also fails to predict the correct steady-
state population size.

Indeed, figure 3(a) shows that deterministic models
do not predict quantitatively either time-dependent
population sizes or steady-state population sizes av-
eraged over many stochastic realizations. We argue
that this difference is due to rapid extinctions, which
are frequent occurrences when considering low ini-
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Figure 3. Deterministic approach performs worse with non-zero death rates. (a) Population size N versus
time t for different population growth models. (b) Rapid extinction probability p0 versus initial population size N0

for different population growth models. (c) Rapid extinction probability p0 versus ratio of death to birth rate d/b for
different population growth models. In every panel, the solid lines the deterministic predictions, and each point results
from simulated data averaged over 105 stochastic realizations. Parameter values: carrying capacity K = 100, birth rate
b = 1, death rate d = 0.1 (in (a)) and 0.5 (in (b)), initial population size N0 = 1 (in (a) and (c)).

tial population sizes and large ratios of death rate to
birth rate [see figures 3(b) and (c)]. Although early
extinctions are more likely when the death rate is
higher than the birth rate, demographic stochastic-
ity leads to extinction with probability p0 = (d/b)N0

(or p0 = (d/(b log(K)))N0 for the Gompertz model),
which is non-zero in all cases. These early extinction
events are not taken into account in deterministic ap-
proaches.

In summary, we conclude that deterministic formal-
ism is not a good predictor of the average population
growth dynamics, even for large carrying capacities in
the presence or the absence of explicit death events.
We also note that the discrepancy between determinis-
tic and average stochastic population sizes worsens as
the initial population size decreases. We further con-
clude that deterministic approaches fail at predicting
the steady-state population size when death events
are explicitly introduced. In the following, we focus
on the pure-birth process, which is already of great
interest in microbiology, as we pointed out earlier. In
the next section, we adopt a stochastic approach to
describe the population growth and obtain an exact
analytical solution for the population size distribution
at all times.

3. ERROR REDUCTION BY
MOMENT-CLOSURE APPROXIMATIONS

To identify the reasons behind the poor perfor-
mance of the deterministic equation, we return to
a stochastic formalism. Generically, any population
growth in the absence of death may be described by a
stochastic birth process whose rates are defined by the
underlying deterministic model [66] (see table 1 for ex-
amples). Let us consider a population whose number
of individuals at time t is denoted by N , whereas its
initial population size is N0. As in equation (5), we
consider that each individual in the population repli-
cates with the same per capita rate bN . Here, the
population size increases from N to N + 1 individuals
at a total rate BN , where BN was defined in table 1
for several population growth models.

We focus on finite-sized populations that grow in
a constant environment with a carrying capacity K.
To fully account for the stochasticity inherent to de-
mographic noise, we use a microscopic and probabilis-
tic description in continuous time of the birth events
within the population. More specifically, we write a
system of differential equations describing the prob-
abilities PN0,N (t) that a population has a given size
N at a given time t knowing that it started with N0

individuals. Because the growth rates vanish when
N → K, the size of our population is at most K,
with the state N = K being an absorbing state, i.e.,
the population indefinitely remains in this state once
reaching it for the first time. Put simply, our stochas-
tic process, while continuous in time, has a finite dis-
crete number of possible states. Here, we assume that
the population jumps between successive sizes with a
rate dependent on its current size leading to a fully
coupled system of equations.

This system of differential equations, formally
called the master equation, governs the time evolu-
tion of the probabilities PN0,N (t). Writing the master
equation for a stochastic jump process requires one to
think about gain and loss terms to the probabilities
PN0,N (t); for our system, it reads [67, 68]

dPN0,N (t)

dt
= BN−1PN0,N−1(t)−BNPN0,N (t) , (7)

where the first term on the right-hand side of equa-
tion (7) is a gain term corresponding to an increase
in the population size from N − 1 to N individuals
via a birth event, whereas the second term is a loss
term corresponding to the population size transition-
ing from N to N + 1 individuals. Although writing
down the master equation for a stochastic jump pro-
cess is often easy, computing the formal solution of
master equations is arduous and has been an active
field of investigation for decades [67–69].

Importantly, the master equation (7) contains all in-
formation about the growth dynamics; in particular,
as it governs the probability distribution PN0,N (t), it
contains all information to compute the averaged pop-
ulation size trajectory over time. Rather than solving
directly equation (7), we derive an equation governing
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Table 2. Moment-closure approximations. Common moment-closure approximations where the

third moment 〈N3〉 is expressed as a function of the first moment 〈N〉 and the second moment 〈N2〉.

Moment-closure approximation Third moment 〈N3〉

Binomial [60] 2
(
〈N2〉 − 〈N〉2

)2
/〈N〉 − 〈N2〉+ 〈N〉2 + 3〈N2〉〈N〉 − 2〈N〉3

Lognormal [34, 61] 〈N2〉3/〈N〉3

N̊asell-Poisson [60] 〈N〉+ 3〈N2〉〈N〉 − 2〈N〉3

New-Poisson [60] 〈N2〉 − 〈N〉2 + 3〈N2〉〈N〉 − 2〈N〉3

Normal [62–64] 3〈N2〉〈N〉 − 2〈N〉3

Separable Derivative-Matching (SDM) [65] 〈N2〉3/〈N〉3

the moments of PN0,N (t), where the m-th moment of
the population size is defined as

〈Nm〉 =
∑
N

Nm PN0,N (t) , (8)

with m a positive integer. For instance, the equation
governing the time-evolution of the first moment (i.e.,
m = 1), which corresponds to the mean population
size, reads

d〈N〉
dt

= 〈BN 〉 , (9)

whereas the equation for the second moment (i.e., m =
2) satisfies

d〈N2〉
dt

= 〈(2N + 1)BN 〉 , (10)

where again averages are defined as 〈·〉 =∑
N (·)PN0,N (t).
The moment equations are closed for linear popula-

tion birth rates as in the Malthusian (or exponential)
growth model. Taking for the sake of simplicity and
without loss of generality b = 1, the population birth
rate of the exponential model is given by BN = N .
Writing out the moment equations, we obtain, for in-
stance,

d〈N〉
dt

= 〈N〉, (11a)

d〈N2〉
dt

= 〈N〉+ 2〈N2〉, (11b)

d〈N3〉
dt

= 〈N〉+ 3〈N2〉+ 3〈N3〉 . (11c)

First, the average population size given by equation
(11a) shows that the deterministic model accurately
describes the average stochastic population size dy-
namics. Secondly, the equation for the second mo-
ment (11b) is closed as it only depends on the second
moment itself and the first moment, which can be ob-
tained analytically by solving equation (11a). Sim-
ilarly, the third moment (11c) is closed as well; the
equation for the mth moment only depends on the m
first moments, and so by solving the moment equa-
tions sequentially, we obtain a closed equation for any
moment of the distribution. This way, important dis-
tribution properties such as its variance or skewness
can be studied analytically.

Meanwhile, the moment dynamics are unclosed for
nonlinear population birth rates, which is often the
case for finite populations. In other words, the equa-
tion for mth moment may involve higher-order mo-
ments, leading to an infinite hierarchy of moment
equations that is not usually solvable. Approxima-
tion techniques to get around this problem exist, and
here, we discuss the accuracy of the most commonly
used.

The most basic way to get around this problem is
to apply a so-called mean-field approximation. The
mean-field approximation relies on the crucial as-
sumption that the distribution of populations sizes is
well-peaked so that PN0,N ≈ δ(N − 〈N〉), where δ
is the Kronecker-delta function. This approximation
naturally leads to the approximations 〈N〉 ≈ N , and
〈BN 〉 ≈ BN , which enable us to recover the determin-
istic limit given by equation (1). More formally, a
Kramers-Moyal expansion in combination with a dif-
fusion approximation of the master equation (7) leads
to the same resulting deterministic equation [67] (see
ESM for details). As we argued earlier, this deter-
ministic model has been very popular, for instance, in
population genetics, as it simplifies calculations and
circumvents the need for the master equation frame-
work [70–73]. Importantly, we argued in section 2
that the distributions of population sizes were wide
(see also figure 5). So unsurprisingly, the mean-field
approximation fails to describe satisfactorily the pop-
ulation size averaged over stochastic realizations.

Going beyond the mean-field approximation re-
quires us to close the hierarchy of moment equations;
these methods are called moment-closure approxima-
tions. They have been extensively used to provide
analytic approximations to nonlinear stochastic pop-
ulation growth models [64, 65, 74]. In the following,
we focus on the Logistic growth model and proceed
to several common moment-closure approximations.
Writing the first few moment equations for the Logis-
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Figure 4. Moment-closure approximations do not satisfactorily reduce the error. (a) Population size N versus
time t for moment-closure approximations with the Logistic model. The data points show simulated data averaged over
105 stochastic realizations. The solid lines correspond to the moment-closure approximations (see Table 2). (b) Relative
error η versus time t for different moment-closure approximations. η is calculated using data from Panel (a). Parameter
values: carrying capacity K = 100, initial population size N0 = 1 and birth rate b = 1.

tic growth model, we obtain

d〈N〉
dt

= 〈N〉 − 〈N
2〉

K
, (12a)

d〈N2〉
dt

= 〈N〉+

[
2− 1

K

]
〈N2〉 − 2

K
〈N3〉, (12b)

d〈N3〉
dt

= 〈N〉 −
[
3− 1

K

]
〈N2〉

+

[
3− 3

K

]
〈N3〉 − 3

K
〈N4〉 . (12c)

Notably, the equation for the first moment 〈N〉 de-
pends on the second moment 〈N2〉, whereas the equa-
tion for the second moment 〈N2〉 depends on the third
moment 〈N3〉, and so on. To close this hierarchy of
moment equations, two routes are often employed:
(i) closure methods can rely on a cumulant trunca-
tion procedure, in which the k first cumulant equa-
tions are approximated by setting all cumulants of or-
der higher than k to 0 [32, 63], (ii) closure methods
can also be based on assumptions on the form of the
underlying distribution of population sizes PN0,N (t)
[27, 31, 62, 64, 74]. Most recently, the latter method
has been extensively used; in these latter approxima-
tions, one often focuses only on the first two moments.

Here, we test several common moment-closure ap-
proximations that express 〈N3〉 as a function of
the first two moments 〈N〉 and 〈N2〉, allowing us
to close the first two moment equations (12a) and
(12b). We report all moment-closure approximations
tested here in table 2. As shown in figure 4, all
moment-closure approximations tested here show a
significant disagreement with the simulated stochastic
mean population. Whereas the Binomial, separable
derivative-matching (SDM), and mean-field approxi-
mations overestimate the mean population size, the
New-Poisson, N̊asell-Poisson and Normal moment-
closure approximations underestimate it. We report
absolute relative errors ranging from ∼ 6% for the
Binomial approximation to ∼ 26% for the normal

approximation. Indeed, classical moment-closure ap-
proximations fail in problems with very skewed un-
derlying probability distributions, for which accurate
knowledge of the higher-order moments is needed [74].
Figure 5 shows that our population growth dynamics
are plagued by large skewness. In other words, figure
5 shows that the population size can have many dif-
ferent values at a given time during stochastic growth.

While these moment-closure approximations gener-
ally reduce the error in predicting the dynamics of
population growth, we note that they cannot generi-
cally be applied to the other growth models consid-
ered in this paper. Indeed, the right-hand side of
equation (9) depends on the terms 〈(1 − N/K)γN〉,
〈log(N)N〉 and 〈Nβ+1〉 for the Blumberg, Gompertz,
and Richards models, respectively. These are not eas-
ily expressed in terms of combinations of moments
of the distribution. Since these nonlinear population
growth models are widely used, it is crucial to devise a
generically applicable method. However, we recognize
that moment-closure approximations allow growth dy-
namics to be described from one or two ordinary dif-
ferential equations, which may be easier than a fully
probabilistic description.

4. TOWARDS AN EXACT SOLUTION TO
STOCHASTIC POPULATION GROWTH

4.1. First approach: transition rate matrix

A first approach to try and solve the master
equation directly is to recast it in the language of
Markov chains. Namely, stochastic population growth
can be interpreted as a continuous-time, K-state
Markov jump process with transition rate matrix
R = (Rij)1≤i≤K,1≤j≤K , where the matrix element Rij
with i 6= j denotes the rate at which the population
switches from value N = i to N = j. The diagonal
elements of the transition rate matrix are generically
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fixed by enforcing conservation of total probability,
which implies

∑
iRij = 0, so that Rjj = −

∑
i 6=j Rij .

As the population sizes potentially vary from 1 to
K, we first define P(t) as the column vector of dimen-
sion K

P(t) =


PN0,1(t)

PN0,2(t)
...

PN0,K(t)

 , (13)

with the ith-component corresponding to the time-
dependent probability of having a population of size
i. We then rewrite equation (7) in matrix form as

dP(t)

dt
= R ·P(t) , (14)

where the K ×K transition rate matrix R is defined
as

Rij =


−Bj if i = j ,

Bj if i = j + 1 ,

0 otherwise .

(15)

The solution to equation (14) can generically be writ-
ten as a weighted superposition of the K eigenvectors
vk of the transition rate matrix multiplied by an ex-
ponential function with rate given by the associated
eigenvalue αk. Namely, we write

P(t) =

K∑
k=1

vkcke
αkt , (16)

a vector whose components give us the time-
dependent probability that the population size is N
given that it was N0 at t = 0,

PN0,N (t) =
K∑
k=1

vk,Ncke
αkt . (17)

Note that the coefficients ck are obtained by the im-
position of the initial conditions and here must satisfy

PN0,N (0) =
∑K
k=1 vk,Nck = δN,N0 , where δ is the Kro-

necker delta. Furthermore, ck = 0 for 1 ≤ N < N0

since a population size lower than N0 cannot be
reached. That is because death events are not con-
sidered here, so the population size can only increase
over time.

As the transition rate matrix R is lower triangular,
the eigenvalues are equal to the diagonal entries of
the matrix, and we obtain αk = −Bk, 1 ≤ k ≤ K.
Finally, we compute the eigenvectors as

vk,N =


0 if 1 ≤ N ≤ k − 1 ,
N−1∏
q=k

Bq
Bq+1 −Bk

otherwise .
(18)

Notably, the eigenvectors vk are ill-defined when the
birth rates are degenerate (i.e., when Bk = Bk′ for
k 6= k′). Indeed, equation (18) shows that some of

the components of the eigenvectors diverge when birth
rates degenerate. The degeneracy typically happens
when the population birth rate curve displays par-
ticular symmetries (see figure 1). For instance, the
Logistic growth model presents a mirror symmetry
with respect to K/2; for all 1 ≤ k ≤ K, we obtain
Bk = BK−k. Diagonalization of the transition rate
matrix would thus not apply to the Logistic growth
model.

In the case where every birth rate is distinct (i.e.,
Bk 6= Bk′ if k 6= k′), we compute the constants ck as

PN0,N (t) =
1

BN

N∑
k=N0

Bke
−Bkt

 N∏
q=N0
q 6=k

Bq
Bq −Bk

 .

(19)
In the next section, we show how to extend this result
to the cases where the birth rates may present some
degeneracies.

4.2. Exact solution: distribution of waiting
times between birth events

As we just saw, the method based on the transi-
tion rate matrix is unsatisfactory because it does not
yield a closed-form solution for equation (14) if birth
rates are degenerate. Here, we suggest a novel ap-
proach based on waiting times between birth events.
The underlying idea is the following: in the absence of
deaths, population growth can be interpreted as a suc-
cession of events (births) happening in a well-defined
order separated by waiting times, which are random
variables. To reach size K from its initial size N0, the
population has to grow one individual at a time and
go from N0 to N0 + 1, then from N0 + 1 to N0 + 2,
etc. in this precise order. Therefore, all the informa-
tion needed to derive the time-dependent probability
PN0,N (t) should be contained in the distribution of
the time between two birth events. In other words, in
the approach based on the master equation and the
transition rate matrix, the reasoning is based on pop-
ulation sizes, whereas in this approach, our reasoning
is instead based on waiting times between successive
events.

We denote by τN the time elapsed between two
births where the population size increases from N to
N + 1 individuals. Owing to the Poissonian nature of
the process, τN is a stochastic variable exponentially
distributed with mean B−1

N . Then, the probability
of having a given number N of individuals at time t
must be equal to the probability that N − N0 births
occurred by t and not N −N0 + 1 yet. Quantitatively
speaking,

PN0,N (t) = Prob

(
N−1∑
k=N0

τk < t <
N∑

k=N0

τk

)
. (23)

The sum of n exponentially distributed random
variables with rates {λi}1≤i≤n follows a hypoex-
ponential distribution [75, 76], which we denote
H (t; {λi}1≤i≤n). Hypoexponential distributions were
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Table 3. Definition of the probability density function for the hypoexponential distribution.

Case 1 if all n rates are identical, then λi = λ, for 1 ≤ i ≤ n and the PDF reads

H (t; {λi}1≤i≤n) =
λn

(n− 1)!
tn−1e−λt ≡ Erlang(t;λ, n) (20)

Case 2 if all rates {λi}1≤i≤n are distinct, then the PDF reads

H (t; {λi}1≤i≤n) =

n∑
i=1

λie
−λit

[
n∏
j=1
j 6=i

λj
λj − λi

]
(21)

Case 3 if the rates present some amount of degeneracy, we denote the multiplicities of the uniques rates {λi}1≤i≤m
as {ni}1≤i≤m with the constraint that

∑m
i=1 ni = n, where m is the number of unique rates. In this last

case, the PDF reads

H (t; {λi}1≤i≤n) =

(
m∏
i=1

λni
i

)
m∑
i=1

ni−1∑
k=0

C(i, k)

k!(ni − k − 1)!
tni−k−1e−λit, (22)

with C(i, k) =

[
dk

dsk

m∏
j=1
j 6=i

(s+ λj)
−nj

]
s=−λi
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Figure 5. Exact solution to the nonlinear population growth problem. (a) Population size N versus time t for
different population growth models. The data points show simulated data averaged over 105 stochastic realizations. The
solid lines correspond to our solution, whereas the dashed lines represent the deterministic equation. (b) Probability PN
of having N individuals at t = 5. Parameter values: carrying capacity K = 100, initial population size N0 = 1, birth
rate b = 1, exponents α = 1, β = 2 and γ = 1.5.

previously studied in the context of population genet-
ics [77] but also cell and systems biology [78–81].

Using the expression for the probability density
function for the hypoexponential distribution (see ta-
ble 3 for the three cases to consider), we write the
exact solution to equation (7) in the form

PN0,N (t) =
1

BN
H (t; {BN0 , BN0+1, . . . , BN}) . (24)

Notably, in the case where all population growth rates
are distinct, the hypoexponential distribution takes
the form (21), and we recover exactly the solution in-
troduced in the previous section (see equation (19)).
In figure 5, we compare our exact solution (24) to the

mean population size measured in simulations of the
stochastic process for our four nonlinear growth mod-
els and show perfect agreement in all cases. We also
confirm in figure 5 that the full probability distribu-
tions measured from simulations agree with our exact
solution.

5. APPLICATIONS

Finally, we cover two examples of applications in
which we show that using a deterministic model in-
stead of an exact solution to stochastic population
growth leads to quantitatively very different results
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and may misinterpret important experimental results.

5.1. Population growth dynamics within a
community

First, we extend our results to the study of a com-
munity composed of multiple strains evolving in the
same environment. Community dynamics has re-
ceived much attention recently with the growing field
of microbiome studies, where predicting the relative
abundance of each microbial strain in the gut micro-
biota represents an opportunity for medical diagnosis,
and treatment [82]. For simplicity and without loss
of generality, we focus on the case of two competing
strains. Consider, for instance, the population dy-
namics of a wild-type (W) strain and a mutant strain
(M) competing in a batch culture environment; we de-
note their intrinsic birth rates bW and bM, respectively.
As before, we define N as the size of the community,
whereas n (resp. N − n) denotes the number of M
(resp. W) individuals. We assume that the size of the
community is limited by a single carrying capacity K.
Note that our approach is easily generalizable to cases
with multiple strains or with different carrying capac-
ities and with explicit interaction parameters.

Furthermore, we introduce the relative fitness of the
two strains, defined as r = bM/bW; this ratio indicates
which strain is favored by natural selection. Specifi-
cally, if r > 1 (resp. r < 1), then strain M is beneficial
(resp. deleterious), with r = 1 corresponding to the
neutral case. Each time an individual reproduces, the
probability that this individual is of strain M is then
given by

αN,n =
rn

(r − 1)n+N
. (25)

Here, we start with an initial community size N0,
composed of n0 individuals from strain M and N0−n0

individuals from strain W. The probability PN0,N (t)
that the community has a total size N at time t, know-
ing that the initial size of the community was N0, is
given directly by equation (24) with population repro-
duction rates

BN =

N−N0∑
n=n0

P (N,n|N0, n0)
(
B

(M)
N,n +B

(W)
N,n

)
, (26)

where B
(M)
N,n and B

(W)
N,n are the rates at which each

population increases. For the Logistic model, these
rates are for instance given by

B
(M)
N,n = bM(1−N/K)n , (27a)

B
(W)
N,n = bW(1−N/K)(N − n) . (27b)

Furthermore, the probability P (N,n|N0, n0) of
finding n individuals of type M when the total number
of individuals is N satisfies

P (N + 1, n|N0, n0) =(1− αN,n)P (N,n|N0, n0) (28)

+ αN,n−1P (N,n− 1|N0, n0) ,

subject to the initial conditions P (N0, n|N0, n0) =
δn,n0

. Note that equation (28) has been extensively
studied in [83]. By definition, the probability to ob-
serve n individuals of type M at time t, knowing that
we had initially n0 such individuals, is

Pn0,n(t) =
K∑

N=N0

PN0,N (t)P (N,n|N0, n0) , (29)

which we exactly compute using equations (24), and
(28). Then, using equations (24), (26), and (28), we
compute the average stochastic community and pop-
ulation sizes

〈N〉(t) =
K∑

N=N0

NPN0,N (t), (30a)

〈n〉(t) =
K∑

n=n0

nPn0,n(t). (30b)

On the other hand, a deterministic description of
the community dynamics leads to the system of dif-
ferential equations

dn

dt
= bM n

(
1− N

K

)
, (31a)

dN

dt
=
(
bMn+ bW(N − n)

)(
1− N

K

)
. (31b)

We once again compare the results of stochastic sim-
ulations quantitatively to the predictions of equation
(30) on one hand and equation (31) on the other
hand. We show in figure 6(a)-(b) that the deter-
ministic model grossly overestimates the size of the
community whereas our stochastic solution perfectly
matches the simulated data. Strikingly, the determin-
istic model is shown to overestimate the equilibrium
population size of strain M. Our stochastic approach
provides an exact prediction of the average community
and population sizes and, more importantly, yields the
full time-dependent probability distributions of com-
munity and population sizes, which is not possible
with a deterministic approach (see figure 6(c)-(d)).

5.2. Fixation probability in a serial passage
experiment

Finally, we show that our exact stochastic solution
yields the fixation probability of a strain in a serial
passage experiment. For this, let us assume that we
start an experiment with the same number of individ-
uals M and W. As usual, the initial size of the com-
munity formed by strains M and W is given by N0;
we introduce the dilution rate D defined as the ratio
of the initial size of the community to the carrying
capacity, D = N0/K.

In a serial passage experiment, the community
grows for a time τ before one applies a bottleneck
by taking a random sample of N0 individuals; math-
ematically, this corresponds to selecting N0 individ-
uals from the community following a binomial law.
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Figure 6. Exact time-dependent population growth and steady-state population sizes in community
dynamics. (a) Total population size N versus time t for different population growth models. (b) Population size n of
strain M versus time t for different population growth models. (c) Probability PN of finding N individuals at time t = 4.
(d) Probability Pn of finding n individuals at time t = 4. In every panel, the solid lines represent our stochastic solution.
In (a) and (b), the dashed lines show the deterministic predictions whereas each points results from simulated data
averaged over 105 stochastic realizations. Parameter values: carrying capacity K = 100, mutant birth rate bM = 1.1,
wild-type birth rate bW = 1, initial community size N0 = 2 and initial wild-type population size n0 = 1.

One then proceeds with a new growth phase of length
τ before applying a new bottleneck. This process is
repeated until only a single strain is left in the com-
munity. In these experiments, a quantity of interest
is the probability pfix that the strain M fixes and that
the strain W goes extinct. In particular, optimizing
the fixation probability as a function of the dilution
ratio D and the waiting time τ has attracted a lot of
attention, especially in the context of directed evolu-
tion [84–86]. To our knowledge, existing studies have
only used deterministic models to answer this ques-
tion.

To calculate pfix, we model the system as a Markov
chain on the number of individuals M after each bot-
tleneck event. At the moment of applying a bottle-
neck, the population contains N(τ) individuals, in-
cluding n(τ) individuals of strain M. If picking a single
individual randomly from the community, the proba-
bility that this individual is of type M is thus given by
n(τ)/N(τ). The probability Πi→j that the number of
individuals M goes from i to j when a bottleneck is

applied follows the binomial distribution

Πi→j =

(
N0

j

)(
n(τ)

N(τ)

)j (
1− n(τ)

N(τ)

)N0−j

. (32)

Under a deterministic approach, n(τ) and N(τ) are
obtained by solving equation (31) with the initial con-
ditions n0 = i and N0 = DK. However, in a stochas-
tic approach, we write the Πi→j as a sum over all
possible pairs (N , n) at time τ weighted by their re-
spective probabilities,

Πi→j =
K∑

N=N0

N∑
n=i

PN0,N (τ)P (N,n|N0, i)×(
N0

j

)( n
N

)j (
1− n

N

)N0−j
, (33)

where P (N,n|N0, n0) is governed by equation (28).
Finally, we note that conservation of probabilities im-
poses that Πj→j = 1−

∑
i 6=j Πi→j .

We define P = (P0, P1, . . . , PN0
) as the column vec-

tor of probabilities Pi to have i individuals of strain

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.15.516663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516663
http://creativecommons.org/licenses/by/4.0/


12

0.1 0.2 0.3 0.4 0.5
Dilution ratio D

0.5

0.6

0.7

0.8

0.9

1
F

ix
a

ti
o

n
 p

ro
b

a
b

ili
ty

 p
fix

Blumberg
Gompertz
Logistic
Richards

S
im
ul
at
io
n

E
xa
ct

D
et
er
m
in
is
tic

Figure 7. Fixation probability in a serial passage
experiment. Fixation probability pfix versus dilution ra-
tio D for different population growth models. The solid
lines represent our stochastic solution, the dashed lines the
deterministic predictions, and each point results from sim-
ulated data averaged over 105 stochastic realizations. Pa-
rameter values: carrying capacity K = 100, mutant birth
rate bM = 1.1, wild-type birth rate bW = 1, time between
each bottleneck τ = 3.

M in the random sample of N0 individuals from the
community following a bottleneck event. Although
the serial passage experiment defines a discrete-time
Markov process, we follow reference [87] and take the
limit of continuous time to write the master equation
governing P as

dP(t)

dt
= R ·P(t) . (34)

Here, the elements of the transition rate matrix R are
given by

Rij = Πi→j , (35a)

Rjj = −
∑
i

Πi→j , (35b)

in which (35b) ensures conservation of probability.
The Markov process thus defined possesses two ab-

sorbing states, namely n = 0 and n = N0, which cor-
respond to the extinction and fixation of strain M, re-
spectively. By definition, once the system reaches one
of these states, it remains there indefinitely. Mathe-
matically, this implies that the first and last columns
of the transition rate matrix are filled with zeros as
these columns contain the transition rates out of the
n = 0 and n = N0 states, respectively. Thus, the
matrix R is not invertible. To deal with this issue,
we introduce the reduced transition rate matrix R̃ in
which the rows and the columns corresponding to the
absorbing states are removed. The fixation probabil-
ity then reads

pfix = −
N0−1∑
i=1

Πi→N0

(
R̃−1

)
i,n0

, (36)

where n0 is the number of individuals M at the be-
ginning of the experiment. As shown in figure 7, the

deterministic approach grossly overestimates the fixa-
tion probability for all dilution rates D. Here, we con-
firm this result for all nonlinear growth models stud-
ied. On the other hand, we show that our stochastic
solution exactly matches the results of stochastic sim-
ulations. This result has significant consequences as
we show in particular that the dilution ratio predicted
by a deterministic approach to optimize the fixation
probability is far from being the actual optimal dilu-
tion ratio, although it is commonly used in the litera-
ture, as was already argued.

6. DISCUSSION

In conclusion, we showed that a deterministic ap-
proach to population growth leads to biased pre-
dictions of the average behavior of this inherently
stochastic process. More precisely, deterministic mod-
els overestimate the population size averaged over
large numbers of stochastic realizations, and this over-
estimation increases with decreasing initial popula-
tion size. Qualitatively, the bias of the determinis-
tic approach is due to the variability of the waiting
times between reproduction events, which is particu-
larly important at small population sizes. Quantita-
tively, the bias of the deterministic approach is due to
unclosed-moment dynamics. Importantly, we showed
that moment-closure approximations are not sufficient
to significantly reduce the relative difference between
analytical predictions and average population sizes,
and are not applicable to all population growth mod-
els.

In contrast, we proposed two methods to derive ex-
act solutions to the stochastic population growth dy-
namics: either by solving the master equation directly,
which requires the diagonalization of the transition
rate matrix, or by tracking reproduction times instead
of population sizes. The first method was shown to be
valid only in situations where the reproduction rates
are distinct, whereas the second is generic. Our so-
lution has revealed that the temporal distribution of
population sizes is proportional to a hypoexponential
distribution. Finally, we showed that our solution pro-
vides a more accurate description (than a determinis-
tic approach) of the time-dependent and steady-state
population sizes in a community composed of compet-
ing strains and the fixation probability of a mutation
in a serial passage experiment.

Our theory offers an opportunity to quantify the
dynamics of microbial communities from colonization
to coexistence and thus contributes to the growing
field of microbial eco-evolutionary dynamics. For ex-
ample, the gut of C. elegans worms colonized by two
neutrally-competing strains was shown to transition
from a single-strain composition at a low colonization
rate to coexistence at a high colonization rate [88]. In
previous work, a deterministic approach was used to
predict this transition [88]. Our exact solution enables
the expansion of this work by quantifying the abun-
dance distribution of either strain within each worm’s
gut.

Our work opens new perspectives on population dy-
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namics, ecology, and evolution. Importantly, our the-
ory yields the full time-dependent probability distri-
bution of population sizes [see equation (24)]. Based
on this result, an interesting future research direction
would be to improve inference methods for growth pa-
rameters, as current methods suffer from substantial
limitations [49]. We propose that the present work
constitutes the first step towards an exact inference
method since it allows for the exact calculation of the
likelihood function [89].

Here, we focused on the case where the only source
of stochasticity in the problem resides in the wait-
ing times between births, corresponding to a homoge-
neous population. A natural extension of our work
would be to consider heterogeneous populations in
which individuals display growth variability, i.e., dif-
ferent intrinsic birth rates b. In this context, it would
be interesting to study the effect of this intrapopula-
tion variability on the growth dynamics both compu-
tationally and analytically by extending the present
work. Interestingly, a further source of stochasticity
could be introduced in the initial population size by
assuming that N0 is a random variable. This model
assumption applies to the initial number of viruses or

bacteria invading a host following infection, which is
a stochastic variable.

Data availability. The authors state that all data
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[48] S. López, M. Prieto, J. Dijkstra, M.S. Dhanoa, and
J. France, “Statistical evaluation of mathematical
models for microbial growth,” International Journal
of Food Microbiology 96, 289–300 (2004).

[49] A.-H. Ghenu, L. Marrec, and C. Bank, “Challenges
and pitfalls of inferring microbial growth rates from
lab cultures,” bioRxiv , 2022.06.24.497412 (2022).

[50] D. T. Gillespie, “A general method for numeri-
cally simulating the stochastic time evolution of cou-
pled chemical reactions,” Journal of Computational
Physics 22, 403–434 (1976).

[51] D. T. Gillespie, “Exact stochastic simulation of cou-
pled chemical reactions,” The Journal of Physical
Chemistry 81, 2340–2361 (1977).

[52] A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi,
“Observing growth and division of large numbers of
individual bacteria by image analysis,” Applied and
Environmental Microbiology 70, 675–678 (2004).
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