
 

Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments

Thibault Bertrand,1,* Yongfeng Zhao,2 Olivier Bénichou,3 Julien Tailleur,2 and Raphaël Voituriez1,3,†
1Laboratoire Jean Perrin, UMR 8237 CNRS, Sorbonne Université, 75005 Paris, France
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We study the transport of self-propelled particles in dynamic complex environments. To obtain
exact results, we introduce a model of run-and-tumble particles (RTPs) moving in discrete time on a
d-dimensional cubic lattice in the presence of diffusing hard-core obstacles. We derive an explicit
expression for the diffusivity of the RTP, which is exact in the limit of low density of fixed obstacles. To do
so, we introduce a generalization of Kac’s theorem on the mean return times of Markov processes, which
we expect to be relevant for a large class of lattice gas problems. Our results show the diffusivity of RTPs to
be nonmonotonic in the tumbling probability for low enough obstacle mobility. These results prove the
potential for the optimization of the transport of RTPs in crowded and disordered environments with
applications to motile artificial and biological systems.
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Run-and-tumble particles (RTPs) are a prototypical
model of self-propelled particles (SPPs) at the colloidal
scale, which belongs to the broader class of active matter
systems [1,2]. In its simplest form, RTP trajectories consist
of a sequence of randomly oriented “runs”—periods of
persistent motion in a straight line at a constant speed—
interrupted by instantaneous changes of direction, called
“tumbles,” occurring at random with a constant rate. This
canonical model has played a pivotal role in the theoretical
description of self-propelled biological entities such as
bacteria [3–7], algae [8], eukaryotic cells [9], or larger-scale
animals [10].
Whereas systems in thermal equilibrium display a time-

reversal symmetry, this invariance is generically lost in
active matter at the microscopic scale because of the
continuous consumption of energy. Nevertheless, at a
constant speed and tumbling rate, an isolated RTP performs
a random walk with diffusive scaling at large enough time-
and length scales which cannot be qualitatively distin-
guished from the equilibrium dynamics of Brownian
colloids. Hence, it is only through their interactions with
either other particles or the environment that RTPs display
nonequilibrium features. Interactions between SPPs can
indeed have spectacular consequences, which have
attracted a growing interest over the past decade. For
instance, dense active suspensions can display large-scale
collective motion in settings where long-range order would
be forbidden for equilibrium systems [11–14]. Another
nonthermal collective effect is the propensity of active
particles to cluster [15–17] or undergo phase separation
[18–20] in the presence of purely repulsive interactions.
The interplay between active particles and their envi-

ronment has also attracted a lot of interest [2]. Most motile

biological systems such as bacteria or dendritic cells
navigate disordered and complex natural environments
such as soils, soft gels (e.g., mucus or agar), or tissues.
Recent simulations have explored the dynamics of active
particles in the presence of quenched disorder as well as
active baths [21–25]. In confined geometries, active
particles accumulate at the boundaries, at odds with the
equilibrium Boltzmann distribution. This has been
observed for a variety of systems from spherical and
elongated particles in linear channels to bacteria in spheri-
cal cavities [26–31]. Such nontrivial interactions with
obstacles can lead to effective trapping and thus have
important consequences in the dynamics of SPPs in
disordered environments. Indeed, active particles in the
presence of static obstacles can display subdiffusive
dynamics [32]. Trapping has been observed both in models
[33–35] and in experiments of biological or synthetic
microswimmers [36–38]. It was shown in numerical
simulations of RTPs moving through arrays of obstacles
that trapping can lead to the existence of an optimal activity
level for drift through the system [39,40]. More recently,
the presence of disordered obstacles was shown to destroy
the emergence of large-scale correlations, preventing flock-
ing and swarming [41]. Despite these various observations,
the generic analysis of the dynamics of a single SPP in
disordered environments remains mostly unexplored, and,
in particular, analytical results are largely missing.
In this Letter, we introduce a minimal model of discrete

time RTP moving on a d-dimensional cubic lattice in the
presence of diffusing hard-core obstacles of density ρ,
which model a potentially dynamic disordered environ-
ment. In particular, this generalizes to RTPs questions that
have attracted a lot of attention for passively diffusing
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particles [42] and externally driven tracers [43–46]. We
determine analytically numerous observables characteriz-
ing the dynamics: the mean free run time, defined as the
mean time between consecutive collisions of the RTP with
obstacles, the mean trapping time of the RTP by obstacles,
and the large-scale diffusion coefficient of the RTP. This
calculation is exact for fixed obstacles in the limit of low
obstacle density ρ → 0 and remains uniformly accurate in
the tumble rate for finite values of ρ and mobile obstacles.
Our analysis reveals the existence of a maximum of the
diffusion coefficient of the RTP as a function of the
tumbling rate, for a low enough mobility of obstacles.
Our approach is based on a generalization of a theorem due
to Kac on mean return times of Markov processes [47],
which was already shown to have important applications in
physics [48,49]. We show here that it implies the following
exact result: For fixed obstacles, the mean free run time is
given by hτri ¼ 1=ρ and is independent of the tumbling
rate of the RTP. In addition, in the case of moving
obstacles, this result still holds for a proper choice of
microscopic collision rules and is independent of the
diffusion coefficient of the obstacles, provided that the
time step of the obstacle dynamics is larger than that of
theRTP.This strikingly simple result has the potential to find
a variety of applications in general lattice gas problems.
Model and definitions—We consider a discrete time RTP

on an infinite lattice in d dimensions surrounded by
obstacles uniformly distributed with a density ρ as shown
in Fig. 1. The RTP, of position rðtÞ, is polarized in a given
direction and, in the absence of interaction with obstacles,

makes one lattice step per unit time in this direction (run),
until its polarity is reset randomly among the 2d possible
directions on the lattice (tumble). We consider that these
tumbling events happen at each time step with probability α,
independently of the presence of obstacles. We assume that
the obstacles perform symmetric nearest-neighbor random
walks, with probability β < 1 to jump at each time step. We
consider obstacles interacting via hard-core repulsion; i.e.,
each lattice site can contain at most one obstacle. The RTP is
assumed to have hard-core interactions with obstacles; for
the sake of simplicity, its size is, however, supposed
negligible in front of the size of the obstacles. The RTP
can therefore jump on a lattice site occupied by an obstacle
but cannot cross it. This assumption, illustrated in
Supplemental Material [50], renders the analytical calcu-
lationsmore tractable but does not fundamentally change the
phenomenology, as shown in Ref. [50], where we analyzed
the dynamics not allowing jumps of the RTP on occupied
sites. We therefore consider the following interaction rule:
When theRTP steps on a lattice site occupied by an obstacle,
it cannot proceed and effectively gets trapped; the RTP is
released by either (i) a tumble leading to a change of polarity
or (ii) a step made by the obstacle in any direction. Our
goal is to compute analytically the diffusion coefficient
D ¼ limt→∞hr2ðtÞi=ð2dtÞ as a function of the tumbling
probabilityα, the jump probability of the obstacles β, and the
obstacle density ρ, where h…i represents an average over the
trajectories. The dynamics starts with a Poisson distribution
of obstacles, and we consider timescales much larger than
1=α and 1=ρ, so that a stationary state is reached.
First, we decompose the trajectory of the RTP in a

sequence of linear runs ai, punctuated by either encounters
with obstacles or tumbles in any direction:

rðtÞ ¼
XnðtÞ
i¼1

ai ð1Þ

with the random variable nðtÞ being the number of linear
runs composing the trajectory up to a given time t. Hence,
the RTP trajectory is a random sum of random variables,
and the following exact asymptotics can be obtained by
generalizing Wald’s identity (see [50]):

hr2ðtÞi ∼
t→∞

hnðtÞiha2i i þ
XhnðtÞi
i;j¼1
i≠j

hai · aji: ð2Þ

We now determine explicitly all terms involved in (2). It
is useful to decompose a trajectory in successive phases of
two types: (i) mobile phases of random duration τr, when
the particle is freely moving on the lattice without interact-
ing with obstacles, and (ii) static phases of random duration
τs, when the particle is trapped by an obstacle. For a
trajectory of length t, the average number of each of the
mobile and static phases is given by N s ¼ t=ðhτsi þ hτriÞ.

FIG. 1. Example trajectory of a run-and-tumble particle (black)
on a 2D lattice among uniformly distributed obstacles (gray) at
density ρ. At t ¼ 0, the RTP starts from the origin and moves
along the direction of its polarity (black arrow) in a sequence of
linear runs (pictured here in different colors) punctuated by
encounters with obstacles and tumbles. The obstacles have a
probability of β=2d to move in a given direction, and the RTP has
a probability of α=2d to flip its polarity along a particular
direction, potentially untrapping the RTP.
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We therefore deduce the mean number of runs performed
until time t:

hnðtÞi ∼
t→∞

t −N shτsi
lp

¼ hτri
ðhτsi þ hτriÞlp

t≡ n̄t; ð3Þ

where the first (persistence length lp ≡ hjaiji) and second
moments of the run length are given by

lp ¼
1

1− ð1− ρÞð1− αÞ ; ha2i i ¼
1þ ð1− ρÞð1− αÞ
½1− ð1− ρÞð1− αÞ�2 :

ð4Þ

In the case of moving obstacles, a trapped particle can be
released by two competing independent mechanisms:
tumbling of the RTP or stepping of the obstacle. Thus,
the mean trapping time reads in the general case

hτsi ¼
1

1 − ð1 − α�Þð1 − β�Þ − 1 ð5Þ

with probabilities α�¼αð2d−1Þ=2d and β�¼βð2d−1Þ=2d.
Mean run time: Generalized Kac’s theorem—We now

determine the mean free running time hτri. In the case of
fixed obstacles, it can be exactly defined as the mean return
time to the setO of all obstacles. Remarkably, this quantity
can be determined exactly by adapting Kac’s theorem [47]
(see [50] for details). For that purpose, we introduce the
auxiliary process r̃ðtÞ. It is identical to rðtÞ in mobile
phases, but the durations of all its static phases are set to 1:
Upon each trapping event by an obstacle, the auxiliary
process is released in the same direction as the original
process rðtÞ would be but after a single time step. The mean
running time is then identical for both processes rðtÞ and
r̃ðtÞ; for the process r̃ðtÞ, which has a uniform stationary
distribution, the Kac theorem takes a simple form and
yields hτri ¼ 1=PstatðOÞ, where PstatðOÞ is the stationary
probability ofO for the auxiliary process. We therefore find
the simple expression

hτri ¼
1

PstatðOÞ ¼
1

ρ
; ð6Þ

which is strikingly independent of the tumbling probability
α and echoes results obtained on continuous space and time
processes in confined domains [49,51]. Interestingly, this
result can be generalized to the case of moving obstacles.
To this end, we encode the dynamics of the full system ofN
obstacles of positions riðtÞð1 ≤ i ≤ NÞ and the auxiliary
process r̃ðtÞ in a dðN þ 1Þ tuple xðtÞ. The process xðtÞ
performs a symmetric random walk on the hypercubic
lattice of dimension dðN þ 1Þ, which is, however, not of
the nearest-neighbor type, because several particles can
move in a given time step. Defining T ¼ fx; ∃i; ri ¼ rg as
the set of trapped configuration, hτri can be defined as the

mean return time of the process xðtÞ to the set T and as
such verifies hτri ¼ 1=PstatðT Þ in virtue of the Kac
theorem. Here PstatðT Þ can depend on the specific choice
of microscopic collision rules between the RTP and
obstacles. However, it can be generically written
PstatðT Þ ¼ Cρ, where the constant C is of the order of 1
and can be exactly set to 1 for a proper choice of micro-
scopic rule [52]. Here, we retain our initial choice, more
relevant to real motile systems, and show in Ref. [50] a very
good agreement between our predictions and the results of
numerical simulations. This shows finally that, up to a
redefinition of microscopic interaction rules, the general
expression (6) still holds for moving particles, showing that
the mean free running time is universally set by the density
of obstacles only, independently of both the tumbling
probability of the RTP and the dynamics of obstacles
parametrized by β. This result, key to the derivation below,
has potential applications to many other lattice gas models.
Long time correlations—As opposed to the classical RT

dynamics in free space, obstacles induce nontrivial corre-
lations hai · aji that remain to be determined to compute the
diffusion coefficient of the RTP [see Eq. (2)]. A first
approximation to the diffusion coefficient can be obtained
by neglecting these correlations, yieldingD0 ≡ n̄ha2i i=ð2dÞ,
where n̄ and ha2i i are determined exactly by Eqs. (3) and (4).
As shown in Fig. 2(b), D0 is already a qualitatively
satisfactory approximation. Nevertheless, this approxima-
tion fails in the case of mobile obstacles, and a more
thorough treatment of the correlations is already necessary
to obtain exact expressions even in the limit of low density of
fixed obstacles. We thus treat exactly the case of fixed
obstacles (β ¼ 0) to the lowest order in ρ. The correlations
can be qualitatively understood in the case of adjacent runs.
If ai ends by a trapping event, then clearly hai · aiþ1i < 0,
because the obstacle forbids the run aiþ1 to keep the
direction of ai; alternatively, if ai ends by a tumble, one
still finds hai · aiþ1i < 0, because particles are less likely to
encounter obstacles upon retracing their steps.
More quantitatively, an exact computation confirms this

analysis and yields (see [50] for details)

hai · aiþ1i ¼
α

αþ ρ

Cþ − C−
2d

−
ρ

αþ ρ

C−
2d − 1

ð7Þ

with the contribution to positive correlations Cþ ¼ l2
p

and to negative correlations C− ¼ ½1þ ð1 − ρÞð1 − αÞ�=
f½1 − ð1 − ρÞð1 − αÞ�½1 − ð1 − ρÞð1 − αÞ2�g. This analysis
shows, in particular, that both contributions of trapping and
tumble events yield contributions of the order of OðρÞ for
ρ → 0. The exact determination of all correlations hai · aji
seems out of reach by the direct enumeration techniques
used for j ¼ iþ 1; we therefore focus on the small density
limit ρ → 0 and write
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hai · aiþki ¼
ρ→0

gðα; kÞ ρ
α
þ oðρÞ; ð8Þ

where a generalization of the argument given above
for k ¼ 1 shows that ∀k, gðα; kÞ ≠ 0. The only two
length scales entering this problem are 1=ρ and 1=α; for
all k, gðα; kÞ has the dimension of a length squared. In the
limit of low density, the only relevant length scale left is

1=α, and a dimensional analysis yields (taking α small)
gðα; kÞ ∼

α→0
− ξk=α2, where ξk is a lattice-dependent dimen-

sionless number; for k ¼ 1, Eq. (7) yields the exact
value ξ1 ¼ 11=24.
Finally, the correction to the diffusion coefficient reads

D −D0

n̄=2d
∼

ρ;α→0
−
2ρ

α3
X∞
k¼1

ξk: ð9Þ

This result is exact to linear order in ρ in the limit α → 0. It
involves dimensionless constants ξk, which are found
numerically to satisfy ξk ≈ ξ1Γk−1, with Γ ≈ 0.22. We show
in Fig. 2(a) a perfect agreement between our numerical
simulations and Eq. (9).
We now aim at obtaining an approximate solution

uniformly accurate in α; to this end, we need to go beyond
the linear order in ρ=α and therefore consider nonvanishing
correlations hai · aiþ1i. We also generalize our argument
here to mobile obstacles, for which the nearest-neighbor
correlations need to be amended. Indeed, two independent
mechanisms can now release the RTP when trapped by an
obstacle, yielding correlations of a different nature: (i) a
tumble of the RTP, as in the case of fixed obstacles, or (ii) a
step made by the obstacle away from the course of the RTP.
The latter induces large correlations in the limit α → 0
which must be taken into account to quantitatively describe
the RTP dynamics. Taking these events into account yields

hai · aiþ1i ¼
α

αþ ρ

Cþ − C−
2d

þ ρ

αþ ρ

�
β�

α� þ β�
Cþ −

α�

α� þ β�
C−

2d− 1

�
≡ γl2

p;

ð10Þ
which yields the exact Eq. (7) in the limit of fixed obstacles,
β → 0. In order to cover the regime of large correlations,
we next assume that correlations are induced by inter-
actions between successive runs only; classical results [53]
then yield hai · aji ¼ γji−jjl2

p. We have checked numeri-
cally that these correlations decay exponentially (see [50]).
After summation, we obtain finally

D ∼
ρ→0

n̄
2d

�
ha2i i þ

2γ

1 − γ
l2
p

�
; ð11Þ

where n̄, ha2i i, lp, and γ are defined explicitly in Eqs. (3),
(4), and (10). This explicit expression, though approximate,
provides a uniformly accurate determination of the diffu-
sion coefficient as we show below; it is, in addition,
consistent with the exact limit (α, β, ρ → 0) defined above.
Optimized diffusivity of the RTP—In Fig. 2, we show our

theoretical predictions for the diffusion coefficient in the
case of static and mobile obstacles along with the results of
simulations. We observe a very good agreement between
the theory and simulations. For fixed obstacles (β ¼ 0), the

(a)

(b)

(c)

FIG. 2. Diffusivity of a run-and-tumble particle–(a) Diffusion
coefficients for fixed obstacles relative to the free diffusion
coefficient Dðρ ¼ 0Þ ¼ ð2 − αÞ=α at various tumbling rates α
as a function of the obstacle density ρ; dashed lines show the
linear expansion in ρ. Diffusion coefficients for (b) fixed ob-
stacles at various obstacle densities ρ and (c) mobile obstacles at
various obstacle mobilities β and density ρ ¼ 0.01 as a function
of the tumbling probability α. In both cases, the symbols are
results of numerical simulations, and the solid lines are given by
Eq. (11). In (b), dashed lines show D0, our approximation where
correlations between runs are neglected.
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diffusion coefficient is nonmonotonic in the tumbling
probability α. Qualitatively, this behavior can be under-
stood as follows: (i) In the limit of high tumbling
probability α ∼ 1, the RTP tumbles at each time step;
decreasing α then increases the long time diffusion coef-
ficient by increasing the persistence length; (ii) in the limit
of low tumbling probability α → 0, the RTP proceeds
mainly in long straight runs, interrupted by trapping events
whose duration τs diverges for α → 0 leading to a vanishing
diffusion coefficient. The analysis of Eq. (11) shows that
the optimal tumbling probability satisfies αm ∝ ρ; in turn,
the optimal diffusion coefficient is found to scale as
Dm ∝ 1=ρ.
In the case of mobile obstacles, the nonmonotonicity in

the diffusion coefficient is preserved only for low enough
obstacle mobility β ≤ βc ∝ ρ. While the diffusion coeffi-
cient in the limit of high tumbling probability is indepen-
dent of the obstacle mobility in the regime ρ → 0, not
surprisingly, it shows a strong dependence on β at low
tumbling probability. It is interesting to note that no matter
the obstacle mobility the RTP diffusion coefficient always
monotonically increases for a low enough decreasing
tumbling probability (α≲ β), showing that, in these
cases, the important unlocking mechanism is obstacle
mobility.
Discussion—Using a minimal model of RTPs in

crowded environments, we have shown that such active
particles display a nonmonotonic diffusivity as a function
of the tumbling probability for static and mobile obstacles.
Our analytical prediction is exact in the limit of low
obstacle density for fixed obstacles. Its derivation is based
on the generalization of a theorem by Kac, a strikingly
simple result expected to find a variety of applications in
general lattice gas problems. While derived for a particular
model for which analytical progress was tractable, our
results qualitatively extend far beyond this case. First, we
show in Ref. [50] that they extend to other microscopic
types of obstacles. Then, a similar behavior has been
previously observed in a mean-field model of bacterial
diffusion in porous media [54]; our result is also reminis-
cent of the negative differential mobility observed in
Refs. [40,44] for active tracer particles. Furthermore, our
results, which are exact in the low density limit, extend
qualitatively to moderate to high densities of relevance to
experimental settings and, in particular, to the diffusion of
bacteria in soft agar gels [54,55]. Finally, while the
derivation of the results reported in this Letter is specific
to RTPs on a lattice, the underlying mechanisms are not,
and we expect similarly rich behaviors for the diffusivities
of other active particles, on a lattice or in continuous space.
This could potentially lead to an optimization of the
diffusion coefficient of active particles with respect to their
reorientation dynamics and, as such, to an enhancement of
their transport properties or exploration efficiency in
crowded environments.
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[9] M. L. Heuzé, P. Vargas, M. Chabaud, M. Le Berre, Y.-J. Liu,
O. Collin, P. Solanes, R. Voituriez, M. Piel, and A.-M.
Lennon-Duménil, Immunological Reviews 256, 240 (2013).

[10] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez,
Rev. Mod. Phys. 83, 81 (2011).

[11] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O.
Shochet, Phys. Rev. Lett. 75, 1226 (1995).

[12] J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105,
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