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We propose a theoretical framework for predicting the protocol dependence of the jamming transition for
frictionless spherical particles that interact via repulsive contact forces. We study isostatic jammed disk packings
obtained via two protocols: isotropic compression and simple shear. We show that for frictionless systems, all
jammed packings can be obtained via either protocol. However, the probability to obtain a particular jammed
packing depends on the packing-generation protocol. We predict the average shear strain required to jam initially
unjammed isotropically compressed packings from the density of jammed packings, shape of their basins
of attraction, and path traversed in configuration space. We compare our predictions to simulations of shear
strain-induced jamming and find quantitative agreement. We also show that the packing fraction range, over
which shear strain-induced jamming occurs, tends to zero in the large system limit for frictionless packings with
overdamped dynamics.
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I. INTRODUCTION

Dry granular materials are composed of macrosized par-
ticles that interact via repulsive contact forces. Due to dis-
sipative interactions between grains, granular materials exist
as static packings in the absence of external driving [1]. As
a consequence, granular packings are out-of-equilibrium, and
their structural and mechanical properties depend on the pro-
tocol used to generate them. Experimental packing-generation
protocols include gravitational deposition [2], vibration [3],
compression [4], and shear [5,6]. Several computational
studies have pointed out that the distribution of jammed
packing fractions depends on the compression rate [7,8] and
rate at which kinetic energy is removed from the system
[9,10]. In addition, experimental studies of photoelastic disks
have identified key differences between granular packings
generated via isotropic compression and pure shear [11].

There has been significant work on understanding the
scaling behavior of the elastic moduli and contact number
near jamming onset in model granular packings composed
of frictionless spherical particles generated using isotropic
compression [12]. However, there is currently no theoretical
understanding of how the ensemble of static packings and their
properties vary with the protocol used to generate them. For
example, what is the difference in the distribution of jammed
packings generated via isotropic compression versus shear?

We focus on isostatic jammed packings of frictionless
disks generated via different combinations of isotropic com-
pression and simple shear and study the distribution of
jammed packings as a function of the path taken through
configuration space. A recent study has distinguished between
“compression-only” jammed packings that possess nonzero
pressure and positive shear moduli for some but not all bound-
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ary deformations, and “shear-stabilized” jammed packings that
possess positive shear moduli for all shear deformations [13].
We describe the protocol dependence of compression-only
jammed packings, which are experimentally realizable [14]
and are relevant for understanding jamming in systems with
frictional interactions [15].

We find several important results. First, an exponentially
large but finite number of jammed packings with an isostatic
number of contacts Nc = N iso

c = 2N ′ − 1 (where N ′ is the
number of disks in the force-bearing backbone) exist in con-
figuration space, defined by the disk positions, packing fraction
φ, and shear strain deformation γ of the system boundaries. In
small systems, nearly all jammed packings can be enumerated
[14]. For example, we have shown that isostatic jammed
packings form one-dimensional (1D) geometrical families as
a function of shear strain [16]. We will show that the choice of
the packing-generation protocol does not change the ensemble
of isostatic, jammed packings, but instead changes which
packings are visited during particular trajectories through con-
figuration space. The average properties of jammed packings
change for different protocols because the probabilities for
obtaining each jammed packing varies with protocol.

We develop a theoretical description of the protocol depen-
dence of the distribution of jammed disk packings (Fig. 1).
We assume that an initially unjammed system will jam when
it encounters the basin of attraction of a jammed packing
as it travels through configuration space. The probability to
obtain a jammed packing is determined by two factors: (1) the
number density of jammed packings in configuration space,
which is independent of the packing protocol and (2) the path
traveled through configuration space, which depends on the
protocol. Using this framework, we predict the average shear
strain to jam initially unjammed packings at each φ and show
that the predictions agree with simulations of shear strain-
induced jamming. Our results indicate that the packing fraction
range, over which shear strain-induced jamming occurs,
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FIG. 1. Fraction of jammed packings (or cumulative distribution)
C(φ,γ ) along different paths in the packing fraction φ and shear strain
γ plane for N = 32. (a) C1(φ,γ ) for protocol 1 (isotropic compression
at fixed γ ; solid line) and C2(φ,γ ) for protocol 2, i.e., compression to
φ followed by shear strain to γ = 0.1 (dotted line), 0.3 (dot-dashed
line), and 0.5 (dashed line). I, II, and III indicate the packing fractions
in (b). (b) We show C1(φ,γ ) (dashed lines) and C2(φ,γ ) (solid lines)
at fixed φ = 0.815, 0.824, and 0.832 indicated by I–III. Protocol
dependence can be seen in the difference between C1 and C2 evaluated
at the same φ and γ , e.g., at φ = 0.824 and γ = 0.67 as highlighted
by the dashed double arrow. Right and left solid arrows indicate
protocols 1 and 2, respectively.

vanishes in the large-system limit for overdamped frictionless
systems.

The remainder of the manuscript is organized into three
sections. In Sec. II we describe our simulation methods and
introduce the two protocols used to generate isostatic jammed
packings. In Sec. III we show results concerning the protocol
dependence of the distribution of jammed packings. We then
describe a theoretical model that allows us to calculate the
probability to obtain jammed packings as a function of the path
that the system traverses in configuration space. In Sec. IV we
summarize our results and conclusions.

II. METHODS

We study systems containing N frictionless bidisperse disks
in a parallelogram with height L = 1 in two dimensions that
interact via purely repulsive linear spring forces with energy
scale ε [17]. (Studies of bidisperse frictionless spheres in three
dimensions are included in Appendix A.) The mixtures contain
half large and half small particles with mass m = 1 for both and
diameter ratio σL/σS = 1.4. We employ Lees-Edwards simple
shear-periodic boundary conditions, where the top (bottom)
images of the central cell are shifted to the right (left) by ±γL

and γ is the shear strain [18]. We varied the system size from
N = 6 to 512 particles.

Below we describe results for two protocols to generate
jammed packings in the φ-γ plane [see Fig. 2 (a)]. Protocol
1 involves isotropic compression at fixed boundary shape
parametrized by shear strain γ . We start with random initial
disk positions at φ0 < 0.5. We successively compress the
system by increasing particle radii uniformly in small packing
fraction increments dφ and minimize the total potential energy
per particle V/(Nε) (at fixed γ ) after each step. Jamming onset
occurs when Vmax > V/(Nε) > 0, with Vmax = 10−16, or an
equivalent threshold on pressure. For protocol 2, we start by
isotropically compressing systems (at γ = 0) to φ, and if the
system is unjammed with V/(Nε) � Vmax, we successively
apply simple shear strain to each particle x ′

i = xi + dγyi in
strain steps dγ < 10−3 followed by minimization of V/(Nε).
We then identify the total shear strain γ at which the system
first jams with 10−16 > V/(Nε) > 0. Protocols 1 and 2
generate compression-only jammed packings. In Appendix C
we also describe results for a third protocol, which is similar to
protocol 2, but with simple shear replaced by pure shear. Note
that isostatic jammed packings can also be generated using
stress-controlled packing-generation protocols [19].

III. RESULTS

We display the cumulative distributions C1,2(φ,γ ) of
jammed packings from protocols 1 and 2 in Fig. 1. In Fig. 1(a)
we show that applying shear strain increases the fraction of
jammed packings at each φ, i.e., C2(γ,φ) shifts to lower φ

with increasing γ . In Fig. 1(b) we show C1(φ,γ ) obtained via
isotropic compression versus boundary shape for φ = 0.815,
0.824, and 0.832 [corresponding to C1(φ,0) ≈ 0.2, 0.5, and
0.8]. 1 − C1(φ,0) of the packings are initially unjammed at
γ = 0 and φ, and these jam with increasing γ as shown by
the solid lines. By combining different amounts of shear strain
and isotropic compression, the fraction of jammed packings at
a given φ can be tuned over a wide range, e.g., from 0.2 to 0.8
for packings at φ = 0.815. These results emphasize that the
distribution of jammed packings depends strongly on the path
through configuration space, e.g., protocols 1 and 2 indicated
by the arrows in Fig. 1(b).

To understand protocol dependence, we examine the dis-
tribution of jammed packings in the φ-γ plane. In Fig. 2(a)
we show the packing fraction at jamming onset φ versus γ for
N = 6 from protocol 1 [solid vertical arrow in Fig. 2(a)].
We find several striking features. First, jammed packings
occur as geometrical families (i.e., segments of parabolas that
correspond to jammed packings with the same interparticle
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FIG. 2. (a) Packing fraction φ versus shear strain γ for all isostatic
jammed N = 6 disk packings. The solid black line obeys φ = A(γ −
γ0)2 + φ0 with A = 0.776, φ0 = 0.665, and γ0 = 0.35. Filled circles
(downward triangles) indicate packings with positive (negative) local
slope. The solid vertical arrow indicates protocol 1, and the dashed
vertical arrow followed by the dashed horizontal arrow indicates
protocol 2 that was used to reach a jammed packing at γ = 0.8 and
φ = 0.725. (b) Jammed packing fraction φ(γ ) using protocol 2 at
fixed φ in the range 0.64 < φ < 0.77 for N = 6. (c) Number of
N = 32 jammed packings at each φ and γ (increasing from dark to
light) from protocol 1.

contact network) in the φ-γ plane. For N = 6, we are
able to enumerate nearly all geometrical families over the
full range of γ [16]. When straining an initially unjammed
system toward positive γ at fixed φ [e.g., horizontal arrow in
Fig. 2 (a)], it will jam on a geometrical family with negative
slope (−|dφ/dγ |). For negative slopes, continued shear
strain leads to overcompression, whereas for positive slopes,
continued shear strain leads to unjamming. This behavior is
shown in Fig. 2(b) for protocol 2 at fixed φ in the range
0.64 < φ < 0.77 for N = 6. Note that any of the jammed
packings in Fig. 2(b) from protocol 2 and defined by {�ri},
φ, and γ can be generated using protocol 1 with initial
condition {�ri} and boundary deformation γ . As a result, we
can generate the same jammed packing at a given φ and γ

using different combinations of compression and shear strain.
We find similar behavior to that in Fig. 2(a) and 2(b) for
larger N , except that the parabolic segments in φ(γ ) become
smaller and more numerous, and thus geometrical families
more densely populate configuration space [Fig. 2 (c)]. The
number of jammed packings (at a given φ and γ ) becomes
independent of γ for N � 32.

We develop a theoretical model using an analogy with
absorption problems to calculate the probability to ob-
tain isostatic jammed packings as a function of the path
that the system traverses in configuration space. In prin-
ciple, the number density of jammed packings F depends
on the 2N coordinates of the disks, φ, and γ , but not the
packing-generation protocol. After integrating over the 2N

disk coordinates, F is a function of φ and γ . However, we
assume that the number density F(φ) is only a function of
φ since F becomes independent of γ in the large-N limit
[Fig. 3(c)]. We imagine that a 1D trajectory L(φ,γ ) through
configuration space will encounter the basin of attraction [20]
of a jammed packing with a probability F(φ)S(φ) dL during
a step of size dL in configuration space, where S(φ) is the
2N − 1-dimensional cross section of the basin of attraction of
a jammed packing perpendicular to dL.

Thus, for protocol 1 with trajectories only along φ, the
decrease in the number of unjammed packings dM1(φ) (or,
equivalently, increase in the number of jammed packings)
during a compression step dφ is

dM1(φ) = −M1(φ)F(φ)S1(φ)�1(φ)dφ, (1)

where dL = �1(φ)dφ, �1(φ) is the distance in configuration
space traversed during step dφ at φ, and S1(φ) is the average
cross section for protocol 1. Equation (1) can be solved for the
number of unjammed packings at φ during protocol 1:

M1(φ) = M0 exp

[
−

∫ φ

φ0

F(φ′)S1(φ′)�1(φ′) dφ′
]
, (2)

where M0 is the number of unjammed packings at φ0.
For protocol 2, with trajectories only along γ , we obtain
a similar expression for the number of unjammed pack-
ings: dM2(φ,γ )/dγ = −M2(φ,γ )F(φ)S2(φ)�2(φ), where
M2(φ,γ ) = M1(φ) exp[−F(φ)S2(φ)�2(φ)γ ], S2(φ) is the av-
erage cross section for protocol 2, and �2(φ) is the distance
traversed in configuration space for each shear strain step dγ .

Figure 3(a) shows that the fraction of unjammed packings
M2(φ,γ )/M1(φ) decays exponentially with γ during protocol

012901-3



THIBAULT BERTRAND et al. PHYSICAL REVIEW E 93, 012901 (2016)

FIG. 3. (a) Natural logarithm of the fraction of unjammed pack-
ings [normalized by the φ-dependent decay factor, F(φ)S2(φ)�2(φ)],
during protocol 2 at fixed φ in the range 0.798 < φ < 0.844 (solid
lines) for N = 32. The dashed line has slope −1. (b) Comparison
of −d ln[M2(φ,γ )/M0]/dγ (open circles) from protocol 2 and
−d ln[M1(φ)/M0]/dφ from protocol 1 with S2(φ) ∝ S1(φ)�1(φ)
(solid line) or S2(φ) ∝ S1(φ) (dashed line) for N = 32. The inset
shows the distances �1(φ) and α�2(φ) (with α ≈ 5.5) traversed in
configuration space during protocols 1 (solid line) and 2 (dashed
line) for N = 32.

2 at each φ. This result emphasizes that we can calculate
the product F(φ)S(φ)�(φ) without enumeration of all jammed
packings by measuring the decrease in the number of jammed
packings with increasing shear strain. In the zeroth order
approximation, the cross section S(φ) is independent of
the path in configuration space and the distance � traveled
during each dφ or dγ step is constant. In Fig. 3(b) we
compare F(φ)S(φ)� from protocol 2 with the similar quantity
−d ln[M1(φ)/M0]/dφ from protocol 1 and find qualitative
agreement.

We then independently measured �1(φ), defined by the
accumulated distance in configuration space between the
initial packing at φ and relaxed packing at φ + dφ, for
protocol 1. We performed similar measurements for l2(φ),
which gives the accumulated distance in configuration space

FIG. 4. (a) Average shear strain γ j (φ) to jam an initially
unjammed configuration at φ and γ = 0 (protocol 2) for N = 32
(circles), 128 (triangles), and 512 (squares). We compare γ j (φ)
from protocol 2 to 1/(F(φ)S1(φ)�2

1(φ)) [Eqs. (3) and (4)] from
protocol 1 for the same system sizes: N = 32 (solid line), 128
(dashed line), and 512 (dotted line). (b) Distribution of jammed
packing fractions P1(φ) from protocol 1 for N = 32 (solid line), 128
(dashed line), and 512 (dotted line) compared to predictions obtained
from P1(φ) = −M−1

0 dM1(φ)/dφ with M1(φ) given by Eq. (2) and
F(φ)S1(φ)l1(φ) given by Eq. (4) using the measured value of γ j for
N = 32 (circles), 128 (triangles), and 512 (squares).

between the initial packing at γ and relaxed packing at γ + dγ

for protocol 2. We show that the two are proportional to each
other, �1(φ) = α�2(φ) with α ≈ 5.5, in the inset of Fig. 3(b).
By calculating −d ln[M1(φ)/M0]/dφ = F(φ)S1(φ)�1(φ) for
protocol 1, we can compare F(φ)S1(φ)�1(φ) to the similar
quantity, F(φ)S2(φ)�2(φ), for protocol 2. In this case, we as-
sume that the cross section depends on the path in configuration
space, e.g., isotropic compression increases the overlaps of all
interparticle contacts, while shear strain increases some but
decreases others. In Fig. 3(b) we show excellent agreement
for F(φ)S1,2(φ)�1,2(φ) for protocols 1 and 2 for N = 32
provided we assume that S2(φ) ∝ S1(φ)�1(φ) and find similar
quantitative agreement for all system sizes studied. (Additional
details of the theoretical model are included in Appendix D.)
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Independent measurements of S1,2(φ) will be performed in
future studies.

We now use the theoretical description of the protocol-
dependent probability to jam to predict the average shear
strain required to jam an initially unjammed isotropically
compressed configuration at φ and γ = 0:

γ j (φ) =
∫ ∞

0
γ

M2(φ,γ )

M1(φ)
dγ = 1

F(φ)S2(φ)�2(φ)
(3)

� α

F(φ)S1(φ)�2
1(φ)

. (4)

In Fig. 4(a) we show that the prediction for γ j (φ), ob-
tained from measurements of F(φ)S1(φ)�2

1(φ) using isotropic
compression, agrees with simulations of shear strain-induced
jamming. We find that γ j grows rapidly with increasing system
size and only packings with φ � 0.84 are jammed in the
large-system limit [21]. (We find similar results for applied
pure shear in Appendix C.) We also calculate the distribution
P1(φ) of jammed packing fractions (for isotropic compression)
using data from protocol 2. In Fig. 4(b) we show that P1(φ)
from protocol 1 and P1(φ) = −M−1

0 dM1(φ)/dφ with M1(φ)
given by Eq. (2) and F(φ)S1(φ)�1(φ) given by Eq. (4) (using
the measured value of γ j ) collapse for all system sizes studied.
The width ofP1(φ) for isotropic compression narrows as 1/Nλ

with λ ≈ 0.55 ± 0.05 and the peak approaches φrcp ≈ 0.84 in
the large-system limit [21].

IV. CONCLUSION

In this paper, we developed a theoretical description for
jamming onset that allows us to predict the fraction of
isostatic jammed packings that occur at φ and γ in terms
of the path traversed in configuration space. This framework
provides predictions for the average shear strain required
to jam initially unjammed packings produced by isotropic
compression, which agree quantitatively with simulations of
strain-induced jamming in two-dimensional (2D) and three-
dimensional (3D) systems subjected to simple and pure shear.
In particular, we showed that the packing fraction range, over
which strain-induced jamming occurs, shrinks to zero in the
large-system limit for frictionless systems with overdamped
dynamics. In future studies, we will investigate the role of
static friction in stabilizing strain-induced jamming of dilute
granular packings [5].
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APPENDIX A: 3D BIDISPERSE PACKINGS

In this section, we present our studies of compression
and shear-strain induced jamming of 3D bidisperse spheres,
which are qualitatively similar to the results for 2D bidisperse
systems presented in the main text. We presented results
in the main text on the distribution of jammed packing
fractions P(φ) and average shear strain γ j required to induce
jamming in an originally unjammed configuration for systems
composed of bidisperse disks in two spatial dimensions (d =
2). However, these results apply more generally than simply to
2D packings of disks. The theoretical analysis in the main text
described trajectories in the dN-dimensional configuration
space in which jammed packings exist, where d is the spatial
dimension. The 2N-dimensional configuration space is already
large, and thus we expect qualitatively the same results for 3D
sphere packings, which exist in a configuration space that is
only 50% larger, as we found for 2D systems.

We studied systems containing N frictionless bidisperse
spheres in a parallelepiped with sides of length L = 1 that
interact via purely repulsive linear spring forces. The bidis-
perse mixtures contain half large and half small particles, both
with mass m = 1, and diameter ratio σL/σS = 1.4. As in two
dimensions, we employ Lees-Edwards simple shear-periodic
boundary conditions, where the top (bottom) images of the
central cell are shifted to the right (left) by γL, where γ is the
simple shear strain.

Here we confirm that we can calculate the distributionP1(φ)
of jammed packing fractions (for isotropic compression) using
data from protocol 2. In Fig. 5 we show that P1(φ) from
protocol 1 agrees with P1(φ) = −M−1

0 dM1(φ)/dφ with

M1(φ) = M0 exp

[
−

∫ φ

φ0

F(φ′)S1(φ′)�1(φ′) dφ′
]
, (A1)

φ
0.56 0.58 0.6 0.62 0.64 0.66

P
(φ

)

0

10

20

30

40

50
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70

FIG. 5. Distribution of jammed packing fractions P1(φ) from
protocol 1 for N = 64 bidisperse spheres (solid line), compared to
predictions obtained from P1(φ) = −M−1

0 dM1(φ)/dφ with M1(φ)
given by Eq. (2) and F(φ)S1(φ)l1(φ) given by Eq. (4) using the
measured value of γ j for N = 64 bidisperse spheres (circles).
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and the product FS1�1 given by the measured value of γ j ,

γ j (φ) � α

F(φ)S1(φ)�β

1 (φ)
. (A2)

We find that β ≈ 1.75 in three dimensions, whereas β ≈ 2.0
in two dimensions.

APPENDIX B: STRESS ANISOTROPY IN
FRICTIONLESS PACKINGS

In this Appendix, we show the typical structure of the
geometrical families for frictionless packings and measure the
ratio of the stress anisotropy to the pressure for these packings.
When deforming granular packings, the deformation method
can be either strain- or stress-controlled. In strain-controlled
deformations, a strain is applied to the system and the
resulting stress is measured. In contrast, in stress-controlled
deformations, a stress is applied to the system, and the resulting
strain is measured. In simulations with periodic boundary
conditions, one of the simplest deformation methods is the
application of simple shear strain γ using Lees-Edwards
boundary conditions. Thus, Lees-Edwards simple shear is
strain-controlled. During the applied simple shear strain, one
can measure the resulting stress of the system.

To measure the stress in two dimensions, we define the
2 × 2 stress tensor


λδ = 1

L2

∑
i>j

fijλrijδ, (B1)

where fijλ is the λ component of the pairwise repulsive force
�fij on particle i from particle j , rijδ is the δ component of

the center-to-center distance vector �rij between particles i and
j , λ = x,y, and δ = x,y. In Fig. 6(b) we show the ratio of
the stress anisotropy τ = |
1 − 
2|/2 to the pressure P =
(
1 + 
2)/2, where 
1 and 
2 are the two eigenvalues of
the stress tensor, as a function of the shear strain γ . In many
cases the normalized stress anisotropy τ/P follows nearly
linear segments along the geometrical families, which appear
as parabolas when φ for each jammed packing is plotted versus
γ [Fig. 6(a)]. However, for other geometrical families, τ/P

appears quadratic in γ . For both cases, τ/P decreases when
−|dφ/dγ | � 0 and increases when dφ/dγ � 0 along each
geometrical family.

APPENDIX C: COMPARISON OF PURE
AND SIMPLE SHEAR

In this Appendix we compare results for simple shear and
pure shear protocols. All of the results for protocol 2 presented
in the main text were obtained using simple shear strain using
Lees-Edwards boundary conditions. We have also studied
strain-induced jamming using pure shear, where the separation
between one pair of opposing edges of the simulation box is
increased by 1 + γ and the separation between the other pair of
opposing edges is decreased by 1/(1 + γ ). This deformation
is the simplest example of a variable-shape simulation cell
method that conserves volume.

We show in Fig. 7 that the strain γ j (φ) required to jam an
initially unjammed configuration at packing fraction φ behaves
qualitatively the same for packings generated via simple and

FIG. 6. (a) Packing fraction φ and (b) ratio of the stress anisotropy
τ to the pressure P versus shear strain γ for all isostatic jammed
N = 6 bidisperse disk packings. The solid black line in (a) obeys
φ = A(γ − γ0)2 + φ0 with A = 0.776, φ0 = 0.665, and γ0 = 0.35.
Filled circles (downward triangles) indicate packings with positive
(negative) local slope of φ versus γ .

pure shear strain. We see that the results for γ j for simple and
pure shear strain begin to deviate at low φ, but the deviation
decreases with increasing system size. In the studies of pure
shear, we stopped the simulations when the size of the cell
in the thin direction caused interactions between a disk in
the main cell and one of its own periodic images. If the
system had not yet jammed, we did not include this trial in
the measurement of γ j . Thus, in the pure shear simulations,
our results at low φ and small system sizes were biased toward
small strains. This effect vanishes in the large-system limit.

APPENDIX D: THEORETICAL MODEL

In this Appendix we elaborate some of the key aspects of
the theoretical model described in the main text. We develop
the theoretical model using an analogy with absorption prob-
lems to calculate the probability to obtain isostatic jammed
packings as a function of the path that the system traverses
in configuration space. In principle, the number density of
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FIG. 7. Average shear strain γ j (φ) required to jam an initially
unjammed configuration at φ using simple shear (light circles) and
pure shear strain (dark squares) for N = 32 (blue symbols), 128
(green symbols), and 512 (red symbols).

jammed packings F , depends on the 2N coordinates of the
disks, the packing fraction φ, and boundary deformation γ ,
but not the packing-generation protocol. After integrating over
the 2N coordinates of the disks, F is a function of φ and γ .
However, for the theoretical description, we assume that the
number density F(φ) is only a function of packing fraction
since F becomes independent of γ in the large system limit as
shown in Fig. 2(c) in the main text.

We imagine that a 1D trajectory L(φ,γ ) through con-
figuration space will encounter the basin of attraction of a
jammed packing with a probability F(φ)S(φ)dL during a
step of size dL in configuration space, where S(φ) is the
2N − 1-dimensional cross section of the basin of attraction
of a jammed packing perpendicular to dL and dL = �1(φ)dφ

and �2(φ)dγ for protocols 1 and 2, respectively.
For the results presented in this paper, our calculations

do not require complete enumeration of jammed packings
and independent measurements of F(φ), S(φ), and �(φ). An
advantage of our work is that we showed that one can obtain the
product FS� without complete enumeration by measuring the
decrease in the number of unjammed configurations during
shear. We showed (for fast quenching protocols) that the
product FS� depends only on the packing fraction φ, and not
on the shear strain γ . This result implies that we can use the
shear protocol to predict the distribution of jammed packings
obtained from the isotropic compression protocol.

To obtain �1,2, we measured the cumulative distance
traveled by the system in configuration space after taking a
step in packing fraction dφ (protocol 1) or a step in shear strain
dγ (protocol 2) and minimizing the total potential energy:

�1,2(φ) =
√√√√ N∑

i=1

|δ�ri |2, (D1)

where δ�ri is the change in position of particle i following
the compression or shear step and subsequent energy mini-
mization. We averaged �1,2(φ) over at least 100 independent
trajectories.
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