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Swelling is a volumetric-growth process in which a porousmaterial expands by spontaneous imbibition of
additional pore fluid. Swelling is distinct from other growth processes in that it is inherently poromechanical:
local expansion of the pore structure requires that additional fluid be drawn from elsewhere in thematerial, or
into thematerial from across the boundaries.Here,we study the swelling and subsequent drying of a sphere of
hydrogel. We develop a dynamic model based on large-deformation poromechanics and the theory of ideal
elastomeric gels, and we compare the predictions of this model with a series of experiments performed with
polyacrylamide spheres. We use the model and the experiments to study the complex internal dynamics
of swelling and drying, and to highlight the fundamentally transient nature of these strikingly different
processes. Although we assume spherical symmetry, the model also provides insight into the transient
patterns that form and then vanish during swelling as well as the risk of fracture during drying.
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I. INTRODUCTION

Swelling is a fundamental process in biology, engineer-
ing, and the earth sciences: tissues swell after injury, wooden
structures swell with humidity, and dry soils swell after
rainfall. Macroscopically, swelling is the volumetric growth
of a porous material due to the spontaneous imbibition of
additional pore fluid. Swelling is distinct from other growth
processes because of the fundamental role of hydrodynam-
ics: local expansion of the pore structure is coupled to the
evolving fluid distribution, making swelling inherently
dynamic and poromechanical.
Swelling in polymeric gels is a classical topic in soft

matter, primarily from the perspective of chemical physics
[1,2]. The mechanics of gels have attracted great interest
more recently in the context of hydrogels [3–6]. A hydrogel
is a cross-linked network of hydrophilic polymers saturated
with water. Hydrogels can experience extremely large and
reversible changes in volume during swelling, which can
result in complex changes in shape and the development of
surface patterns [3,7–10]. Hydrogels have found a wide
variety of practical applications; for example, they are
widely used for moisture absorption and in soft contact
lenses [11–13]. In biomedical engineering, they are used
for drug delivery, wound dressing, and as a scaffold for
tissue engineering [12–15]. They have also shown promise
for use as sensors, actuators, and flow controllers [16–18],
and as a model system in soft granular matter [19–21].

In applications involving swelling, such as moisture
absorption, drug delivery, and sensing and actuation, the
primary design considerations are the degree of swelling and
the rate of swelling in response to various environmental
stimuli. The degree of swelling is an equilibrium property of
a given gel in a given environment, and is now relativelywell
understood [2,22,23]. The rate of swelling, in contrast, is an
emergent property of a gel-environment system that also
depends on the gel geometry through the transient kinetics
andmechanics of swelling. The ability tomodel and tune the
rate of swelling in response to different stimuli is central to
engineering design; for example, applications in actuation
and flow control rely on changes in size and/or shape during
swelling and are typically designed for a fast response,
whereas contact lenses should tend to preserve their size and
shape and should respond slowly in order to buffer the eye
from sudden variations in ambient conditions. However, the
transient mechanics of swelling have received compara-
tively little attention and remain poorly understood. For
relatively small volume changes, the dynamics of swelling
have been studied using both simple linear models [24–30]
and fully nonlinear models [4,6,31,32], but no study has yet
combined the fully nonlinear and transient mechanics of
swellingwith the extremevolume changes that are one of the
most noteworthy, surprising, and useful characteristics of
hydrogels. This is due in part to the fact that transient
phenomena with large volume changes and strong poro-
mechanical coupling are very challenging from the perspec-
tive of computational mechanics.
Here, we focus on the simplest three-dimensional example

of extreme swelling: the swelling and subsequent drying
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(deswelling) of a hydrogel sphere (Fig. 1). Despite the
apparent simplicity of this problem, no model has yet
shown satisfying agreement with experiments in terms of
the dynamics of swelling and drying [33]. We address this
problem with a fully nonlinear model that combines the
framework of large-deformation poromechanics [34] with
the theory of ideal elastomeric gels [4,22,23]. By including
only the essential features of swelling, our approach allows for
a clear and detailed exploration of the transient poromechanics
of swelling and drying across a wide range of parameters; the
resulting spherically symmetric model is alsowell suited to an
efficient numerical solution, even for very large changes in
volume and strongly nonlinear constitutive behavior.
For both swelling and drying, we study the full transition

from one equilibrium state to another, comparing the
macroscopic predictions of the model with a series of
experiments. We then use the model to study the detailed
mechanics of swelling and drying, highlighting the
fundamental and striking differences between these two
processes. We also develop a novel model for evaporation-
limited drying, and we study the impact of an evaporation
limit on the development of strong tensile effective stresses
during drying. Although we assume spherical symmetry,
the model also provides insight into the transient patterns
that form and then vanish during swelling [Figs. 1(a)
and 3(c)], as well as the risk of fracture during drying.
The most important conclusion of our study is that

swelling and drying are inherently dynamic processes.
Both the development of patterns during swelling and
the risk of fracture during drying are transient phenomena

that must be studied with a truly dynamic model that
accounts for the evolving heterogeneous water content.

II. POROMECHANICAL SWELLING MODEL

A gel is a mixture of fluid and solid, where the solid
forms a connected porous skeleton and the fluid occupies
the pore space. In a polymeric hydrogel, the solid is a cross-
linked network of polymer chains and the fluid is water.
Fully swollen hydrogels typically have a solid volume
fraction of less than 1% (i.e., a volume swelling ratio of
several hundred).

A. Ideal elastomeric gels

The swelling of a polymeric gel occurs through the
spontaneous imbibition of additional fluid, which requires
volumetric expansion of the polymer network to increase
the pore volume. This is driven by a strong chemical
affinity between the fluid and the polymer chains, such that
the increase in fluid content is associated with a decrease in
the free energy of the mixture. This decrease in free energy
due to mixing is opposed by an increase in free energy
due to elastic stretching of the polymer network. Swelling
reaches equilibrium when the penalty due to further
stretching precisely balances the benefit due to further
mixing. Formally, this motivates the assumption due to
Flory and Rehner [1,35] that the nominal free-energy
density of the mixture F is the sum of a stretching
contribution and a mixing contribution:

F ¼ F stretchðλ1; λ2; λ3Þ þ FmixðJÞ: ð1Þ
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FIG. 1. A polymeric hydrogel is a cross-linked network of polymer chains saturated with water. Swelling occurs due to the
spontaneous imbibition of additional water, stretching the polymer chains; drying or deswelling is the reverse. Here, we show the
evolution of the mean radius of beads with a dry radius ad ¼ 0.76 mm and a fully swollen radius 6.4ad during (a) swelling and
(b) drying with sketches illustrating the composition.
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This is the Helmholtz free energy of the mixture per unit
reference volume of dry polymer, where the principal
stretches λ1, λ2, and λ3 measure the relative change in
linear dimension along the principal axes of the deforma-
tion, and the Jacobian determinant J ¼ λ1λ2λ3 measures the
relative change in bulk volume. We work in terms of
principal quantities here for clarity and simplicity; we
provide the general version of this theory for arbitrary
deformations in Appendixes A and B.
The nominal elastic free-energy density F stretch accounts

for the stretching of the polymer chains and the nominal
free-energy density of mixing Fmix accounts for the
chemical interactions between the polymer chains and
the fluid. The former depends on the full deformation
field, whereas the latter is assumed to be an isotropic
function of the local composition, as measured uniquely by
J (see Appendixes C and D). These two contributions are
assumed to be completely independent, which is justified
by the very low density of cross-links, so that the dominant
chemical interactions are between the individual monomers
and the fluid molecules. These assumptions form the basis
for the theory of ideal elastomeric gels [4,22,23].
The mixing contribution Fmix measures the free energy

of a unit volume of dry polymer after mixing with a volume
J − 1 of fluid, thereby increasing in bulk volume by a factor
of J. This ignores the elastic penalty of stretching the
polymer chains, and would therefore be the same for a
polymer solution with no cross-links. Fmix is typically
derived from the Flory-Huggins theory of polymer solu-
tions [1,36,37], and can be written

FmixðJÞ¼
kBT
Ωf

�
ðJ−1Þ ln

�
1−

1

J

�
−
1

α
lnJþχ

�
1−

1

J

��
;

ð2Þ

where kB is the Boltzmann constant, T is temperature, and
Ωf is the volume of fluid per fluid molecule in the unmixed
state. The first two terms in square brackets reflect the
entropy of mixing, where α is a measure of the volume per
polymer molecule relative to the volume per fluid molecule
in the mixture. The third term reflects the enthalpy of
mixing, where χ is the dimensionless interaction parameter.
The elastic contribution F stretch measures the elastic free

energy of a unit volume of dry polymer that has been
arbitrarily deformed, ignoring the mixing-related conse-
quences of imbibing or expelling fluid. F stretch is typically
derived by assuming a rubberlike (Gaussian-chain) elastic
response in the polymer network [35], and can be written

F stretchðλ1; λ2; λ3Þ ¼
kBT
2Ωp

�X3
i¼1

λ2i − 3 − 2 ln λ1λ2λ3

�
; ð3Þ

where Ωp is the volume of polymer per polymer molecule
in the unmixed state. This model represents the entropic

penalty of deforming a cross-linked network of randomly
oriented polymer chains [38].
The increase in the total nominal free-energy density of

the mixture must be balanced by the external work done.
This can be written as follows, noting that we do not adopt
the Einstein summation convention:

dF ¼
X3
i¼1

�
Jσi
λi

dλi

�
þ μf
Ωf

dJ; ð4Þ

where σi are the principal true (Cauchy) total stresses
within the mixture and μf=Ωf is the chemical potential of
the fluid per unit mixture volume, which measures the
amount of work required to move a unit volume of fluid
from the environment to the mixture. Note that the
chemical potential of the polymer does not enter into this
balance because the number of polymer chains in the
reference volume is fixed by definition. Combining Eq. (1)
with Eq. (4) and requiring that this remain valid for any
arbitrary deformation dλi, we arrive at a constitutive
expression relating σi to the deformation of the gel,

σi ¼
λi
J

∂
∂λi F stretch þ

d
dJ

Fmix −
μf
Ωf

: ð5Þ

We next use these definitions to develop a model for the gel
within the framework of poromechanics.

B. Large-deformation poromechanics

One classical approach to gel mechanics is based on
the theory of linear poroelasticity [26–28]. The resulting
ad hoc models are limited to infinitesimal deformations,
and typically neglect the chemical physics of swelling. We
generalize this approach by combining the constitutive
model for ideal elastomeric gels (discussed above) with the
framework of large-deformation poromechanics.
The stretching contribution to the total stress is asso-

ciated with deformation of the polymer network. In
poromechanics, this is known as the Terzaghi effective
stress σ0 [34],

σ0i ≡ λi
J

∂
∂λiF stretch ¼

kBT
Ωp

�
λ2i − 1

J

�
: ð6Þ

This motivates defining the pore pressure p according to

p≡ μf
Ωf

þ Π →
μf
Ωf

¼ p − Π: ð7Þ

The pore pressure p can then be interpreted as the
mechanical contribution to the chemical potential, as usual
for an incompressible mixture, and the osmotic pressure Π
as the mixing contribution,
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Π≡ −
d
dJ

Fmix ¼ −
kBT
Ωf

�
1

J
þ ln

�
1 −

1

J

�
−

1

αJ
þ χ

J2

�
:

ð8Þ

Equation (5) can then be recast in the familiar form of Biot
poroelasticity [39],

σi ¼ σ0i − p: ð9Þ

The decomposition of total stress into effective stress and
pore pressure [Eq. (9)], and of chemical potential into pore
pressure and osmotic pressure [Eq. (7)], is a key distinction
between our approach and previous theories [4,31,32,40].
This is central to our interpretation of the mechanics of
swelling, allowing us to separate the roles of fluid and solid,
and of mechanics and chemistry. Conveniently, this model
also reduces to standard poroelasticity when the mixing
contribution is negligible [34].
We next outline the main results for spherically sym-

metric swelling. For clarity, we work strictly in an Eulerian
reference frame and in terms of true quantities. We
provide in Appendixes A and B the general 3D form of
the equations, as well as a Lagrangian formulation for
comparison.
For a spherically symmetric deformation, the displace-

ment field is purely radial, usðx; tÞ ¼ usêr, and the
principal directions are êr, êθ, and êφ. The deformation
gradient tensor F is then diagonal, with principal stretches

λr ¼
�
1−

∂us
∂r

�−1
and λθ ¼ λφ ¼

�
1−

us
r

�−1
ð10Þ

and Jacobian determinant

J ¼ λrλθλφ ¼ λrλ
2
θ: ð11Þ

If the individual densities of the fluid and solid constituents
are constant and preserved on mixing, then conservation of
volume dictates that J must be related to the local volume
fraction of fluid ϕf (the fluid fraction or porosity) by

J ¼ 1

1 − ϕf
; ð12Þ

where we have taken the reference state to be relaxed
and dry (J ¼ 1 → ϕf ¼ 0). Combining Eqs. (10)–(12), we
have

ϕf ¼
1

r2
∂
∂r

�
r2us − ru2s þ

1

3
u3s

�
; ð13Þ

which can be inverted as

us ¼ r −
�
r3 − 3

Z
r

0

r2ϕfdr

�
1=3

: ð14Þ

Conservation of volume further dictates that

∂ϕf

∂t þ 1

r2
∂
∂r ðr

2ϕfvfÞ ¼ 0 and ð15aÞ

∂ϕs

∂t þ 1

r2
∂
∂r ðr

2ϕsvsÞ ¼ 0; ð15bÞ

where ϕs is the local volume fraction of solid, such that
ϕf þ ϕs ¼ 1, and vf and vs are the radial components of
the fluid and solid velocities, respectively. Summing
Eqs. (15) and integrating, we have that

ϕfvf þ ð1 − ϕfÞvs ¼ 0; ð16Þ

which is simply a statement that there is no net flux of
material through any cross section (i.e., in order for fluid
to move inward, an equal volume of solid must move
outward).
The local flux of fluid relative to the polymer network

is driven by gradients in the chemical potential, which
accounts for both mechanical and chemical contributions
(p and Π, respectively). This can be written in the form of
Darcy’s law (see Refs. [27,41] and Appendix E),

ϕfðvf − vsÞ ¼ −
kðϕfÞ
η

∂
∂r

�
μf
Ωf

�
; ð17Þ

where kðϕfÞ is the deformation-dependent permeability of
the solid skeleton, which we take to be an isotropic function
of the porosity, and η is the dynamic viscosity of the fluid.
We adopt a common form for the permeability function
[33,42,43],

kðϕfÞ ¼ k0
ϕf

ð1 − ϕfÞβ
; ð18Þ

with characteristic value k0 and parameter β.
References [42], [43], and [33] suggest β ¼ 1.5, 1.85,
and 1.75, respectively. We follow Ref. [42], adopting
β ¼ 1.5.
Combining Eqs. (15)–(17), we arrive at a conservation

law for the porosity in terms of the chemical potential,

∂ϕf

∂t −
1

r2
∂
∂r

�
r2ð1 − ϕfÞ

kðϕfÞ
η

∂
∂r

�
μf
Ωf

��
¼ 0: ð19Þ

The chemical potential is then related to the deformation
of the solid skeleton by combining Eqs. (7) and (9) with
mechanical equilibrium, which requires that the divergence
of the total stress must vanish. For spherical symmetry, this
leads to
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∂
∂r

�
μf
Ωf

�
¼ ∂σ0r

∂r þ 2
σ0r − σ0θ

r
−
∂Π
∂r ; ð20Þ

where the radial and azimuthal effective stresses σ0r and σ0θ
(¼ σ0φ) are provided by taking i ¼ r and i ¼ θ, respectively,
in Eq. (6). With suitable initial and boundary conditions,
we now have an integro-differential system of equations
in ϕf, μf, and us constituting a nonlinear moving-boundary
problem.

C. Scaling

We make the model dimensionless by choosing charac-
teristic time scale τ, length scale ad (the dry size),
permeability scale k0, and stress scale kBT=Ωp. We then
have, for example,

~t¼ t
τ
; ~r¼ r

ad
; ~a¼ a

ad
; ~us¼

us
ad

; ~k¼ k
k0
;

~σi¼
σi

kBT=Ωp
; ~μf ¼

μf=Ωf

kBT=Ωp
; ~Π¼ Π

kBT=Ωp
; ð21Þ

where the characteristic time scale is

τ ¼ ηa2dΩp

k0kBT
: ð22Þ

The dimensionless model is then fully characterized by just
three parameters, which are the three material properties
that appear in the dimensionless osmotic pressure,

~Π ¼ −
Ωp

Ωf

�
1

J
þ ln

�
1 −

1

J

�
−

1

αJ
þ χ

J2

�
: ð23Þ

The dimensionless model is independent of the size of the
sphere, implying that swelling is a scale-free process [44].
We continue from this point in dimensionless quantities,
which we denote throughout by an overtilde.

D. Dry state and boundary conditions

In its fully dry state, the sphere is solid polymer with
ϕf;d ¼ 0. The dry sphere has radius ad ( ~ad ¼ 1) and
therefore contains a volume Vd ¼ 4

3
πa3d of dry polymer.

We take the polymer chains to be mechanically relaxed in
the dry state, so that

~us;d ¼ 0; ð24aÞ

Jd ¼ λr;d ¼ λθ;d ¼ 1; and ð24bÞ

~σ0r;d ¼ ~σ0θ;d ¼ 0: ð24cÞ

Relative to this reference state, the sphere will swell to
equilibrate its internal chemical potential with that of the

surrounding environment. The center of the sphere remains
stationary,

~usð0; ~tÞ ¼ ~vsð0; ~tÞ ¼ ~vfð0; ~tÞ ¼ 0; ð25Þ

and the outer boundary of the sphere is a material boundary,

~usð ~a; ~tÞ ¼ ~að~tÞ − 1; ð26Þ

where ~aðtÞ ≥ 1 is the radius of the sphere at time ~t. The
outer boundary is also unconstrained, so the normal
component of the total stress must vanish,

~σrð ~a; ~tÞ ¼ 0 → ~σ0rð ~a; ~tÞ ¼ ~pð ~a; ~tÞ: ð27Þ

Note that, unlike for a macroscopic porous medium, we
cannot impose constraints on σ0r and p individually because
the solid and the fluid are mixed at the molecular scale.
Last, the chemical potential at the outer boundary must
always match the ambient value,

~μfð ~a; ~tÞ ¼ ~μ⋆f → ~pð ~a; ~tÞ ¼ ~μ⋆f þ ~Πð ~a; ~tÞ; ð28Þ

where ~μ⋆f → −∞ gives the fully dry state and ~μ⋆f ¼ 0 gives
the fully swollen state. Note that Eqs. (27) and (28) together
imply that the pore pressure is discontinuous across ~r ¼ ~a,
meaning that the pressure just inside the gel always differs
from the pressure in the environment.

E. Equilibrium state

When the sphere reaches equilibrium with its environ-
ment, both the fluid and the solid must again be stationary,
~vf ¼ ~vs ¼ 0, and the chemical potential must be uniform
and equal to the ambient value, ~μf ¼ ~μ⋆f . Equation (20) then
provides a nonlinear ordinary differential equation for ~us.
For an unconstrained sphere (no external stresses), this is
satisfied by the isotropic solution

~usðrÞ ¼ ½ð ~aeq − 1Þ= ~aeq�~r; ð29aÞ

Jeq ¼ λ3r ¼ λ3θ ¼ ~a3eq; and ð29bÞ

~σ0r ¼ ~σ0θ ¼ ð ~a2eq − 1Þ= ~a3eq: ð29cÞ

The equilibrium radius ~aeq is determined by the nonlinear

algebraic equation ~σ0rð ~aeqÞ ¼ ~Πð ~a3eqÞ þ ~μ⋆f . The result
depends only on ~μ⋆f and the three dimensionless material
properties: Ωf=Ωp, α, and χ [Eq. (23)].

III. DYNAMICS OF SWELLING

A hydrogel sphere that is initially at equilibrium with
ambient chemical potential ~μ⋆f;0 will swell when exposed
to a new chemical potential ~μ⋆f > ~μ⋆f;0. Swelling will
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stop when the sphere reaches equilibrium with its new
environment.

A. Poromechanics of swelling

We consider a sphere that is initially at equilibrium with
air of relative humidity RH ≈ 0.6, for which the sphere is
nearly dry. The chemical potential in this initial state is then
~μfð~r; 0Þ ¼ ~μ⋆f;0 ¼ ðΩp=ΩfÞ lnðRHÞ. At ~t ¼ 0þ, the sphere
is suddenly immersed in water, for which ~μ⋆f ≈ 0 ≫ ~μ⋆f;0.
The final state will be a new equilibrium state at which
~μfð~r; ~tÞ → ~μ⋆f . We study the dynamics of this transition
numerically using a finite-volume method with an adaptive
grid and explicit time integration (see Appendix F). Typical
results are shown in Fig. 2.
The displacement ~us is strictly positive, meaning that all

material points move strictly radially outward from their
initial positions throughout the swelling process [Fig. 2(d)].
However, there is also a positive and increasing gradient in
displacement from the center to the outer edge, indicating
that material points near the outer radius move outward
earlier and further than those closer to the center. This is
indicative of strongly nonuniform volumetric expansion in
a spherical geometry. Accordingly, we find that the porosity
ϕf near the outer boundary increases sharply at early
times as the dry gel on the outside rapidly imbibes water
[Fig. 2(a)]. This rapid swelling of the outer region is
inhibited by its attachment to the comparatively unswollen
core, leading to a strongly tensile radial effective stress
in the outer region that relaxes as the swelling process
proceeds inward [Fig. 2(b)].

The pore pressure just inside the gel must exceed the
ambient pressure by the osmotic pressure throughout the
swelling process, and at equilibrium [ ~pð ~a; ~tÞ ¼ ~Πð ~a; ~tÞ
from Eq. (28)]. Fluid flows into the gel from the environ-
ment despite this larger-than-ambient pore pressure
because flow is in the direction of decreasing chemical
potential ~μf, and the chemical potential decreases mono-
tonically toward the center. This gradient becomes gentler
as the chemical potential throughout as the gel increases,
equilibrating with the ambient value [Fig. 2(f)].
The effective stresses everywhere are strictly positive

(tensile) throughout the swelling process since the polymer
chains are being stretched to accommodate additional pore
fluid [Figs. 2(b) and 2(e)]. The mechanical support for this
stretching is provided by the large pore pressure [Fig. 2(c)].
The gel behaves in this sense like an inflating balloon, with
pressure in the fluid balancing elastic stretching in the solid,
the distinction being that this is a bulk phenomenon within
the gel.
Although the azimuthal effective stress ~σ0θ is tensile

everywhere, the azimuthal total stress ~σθ is strongly
compressive in the outer region where the pore pressure
far exceeds the tensile effective stress. This reflects the fact
that the outer region is imbibing fluid and trying to grow
while being bonded to the unswollen inner region.

B. Swelling experiments

To study swelling experimentally, we submerge dry
polyacrylamide hydrogel beads (Educational Innovations)
in a container of water (Volvic or EMD Millipore) and

FIG. 2. Free swelling: Spatial distributions of (a) porosity ϕf, (b) radial effective stress ~σ0r, (c) pressure ~p, (d) displacement ~us,
(e) azimuthal effective stress ~σ0θ, and (f) chemical potential ~μf (all dimensionless) at ~t ¼ 0 and then several times logarithmically spaced
between ~t ¼ 10−6 and 10−1 (light to dark red). The arrows guide the eye through the time evolution, which is in many cases
nonmonotonic. These results are for material properties Ωf=Ωp ¼ 1.28 × 10−4, α ¼ 250, and χ ¼ 0.4. The initial state is nearly dry
( ~μ⋆f;0 ¼ −5 × 103 and ~a0 ¼ 1.067) and the final state is fully swollen ( ~μ⋆f ¼ 0 and ~aeq ¼ 6).
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photograph them at regular time intervals using a digital
camera. Via image processing, we then extract the average
radius of the bead and the number of lobes around the
circumference, both in the plane of the image (Fig. 3).
We show the time evolution of the average radius, a=ad,

in Fig. 3(a) for three different beads. To compare these
results with the model, we need to determine the three
material properties α, χ, and Ωf=Ωp, as well as the dry size
ad for each bead. The material properties are unknown and
difficult to measure directly. For all three beads, we adopt
α ¼ 250 and χ ¼ 0.4, similar to values used for similar
materials in previous studies [33]. We further assume
RH ¼ 0.6 in the initial state. We can then calculate the
dry sizes of the beads, which are essentially independent of
Ωf=Ωp (see Appendix G). Finally, we use Ωf=Ωp as a
fitting parameter to match the final equilibrium size of each
bead, which leads to Ωf=Ωp ∼ 1.09 × 10−4 with a variation
between beads of roughly �7%. Note that variation in
material properties has been noted previously, even within
the same batch [44]. The dimensionless swelling problem is
then fully specified.
To plot the model results against dimensional time, we

need to calculate the characteristic time scale τ [Eq. (22)].

To do so, we take Ωf ¼ 2.99 × 10−29 m3, η ¼ 10−3 Pa s,
kB ¼ 1.38 × 10−23 J K−1, and T ¼ 295 K. The final quan-
tity in the time scale is the characteristic permeability k0;
we choose the value for which the model best matches the
experiment, k0 ¼ 8.0 × 10−20 m2. This value is again
similar to that used in previous work [33,42]. We use this
value for all beads. The associated characteristic times are
τ ∼ 4.5 × 105 s, with a variation of about 20% due to the
slightly different dry sizes. Having fitted the final radius
and calculated the time scale, the model provides a good
qualitative and quantitative match with the data. The
number of unknown parameters is sufficiently large that
no particular set of values can be said to provide a unique
match, but these values provide a useful comparison.
The inset of Fig. 3(a) highlights the early-time evolution,

indicating a power-lawgrowth of the form ða=ad−1Þ∝ t0.45,
suggesting that swelling is dominated by diffusionlike
transport of water into the gel at very early times. The model
also follows a power law at early times, but with an exponent
closer to 0.38. The discrepancy may be due to the surface
instability,which leads to a large change in the surface area of
the bead and may fundamentally change the dynamics of
swelling.

FIG. 3. The swelling of a spherical gel. (a) Time evolution of the radii of three hydrogel spheres after immersion in water, showing
experimental data (orange, blue, and yellow, shifted vertically by 0, 0.5, and 1, respectively, for clarity) and the predictions of the model
(dashed gray, also shifted by the same amounts). The inset shows a=ad − 1 against t for the data and the model on a logarithmic scale to
highlight the power-law behavior at early times (same colors, and scaled vertically by factors of 2=3, 1, and 3=2, respectively, for clarity).
(b) Time evolution of the number of lobes around a circumference of the swelling sphere for four different experiments. (c) Photographs of a
swelling gel at different times, as indicated, where the initial radius is ad ≈ 1.5 mm and the final radius is ∼6.7ad.
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Other than the extreme increase in volume, the most
striking aspect of swelling is the development and
evolution of the lobelike surface pattern, a well-known
phenomenon [3,7,8].

C. Transient surface instability

Interfacial growth has long been linked to pattern
formation [45–47]. More recently, volumetric growth under
fixed, external constraints has attracted attention due to its
likely role in developmental morphogenesis [48–51]. In
swelling, the fluid content provides an evolving internal
constraint that can lead to the formation of both steady and
transient patterns [3,7–9].
For a bead of initial radius ∼1.5 mm, the swelling

process takes about 5 h [Fig. 3(c)]. During this time, the
surface of the bead exhibits a transient pattern that evolves
from small-scale to large-scale features through a coars-
ening process where neighboring lobes grow and merge
[Fig. 3(b)]. Small-scale surface roughness emerges and
then rapidly develops into a relatively uniform tiling of
hexagonal lobes [Fig. 3(c), 13–52 min]. This pattern
transitions to a randomly oriented network of folds or
wrinkles at later times [Fig. 3(c), 52–201 min], and these
ultimately merge and fade back into a smooth spherical
surface [Fig. 3(c), 380 min]. The bead then continues to
grow smoothly until reaching its equilibrium size.
As described in the previous section, swelling is

characterized by a rapidly growing outer shell that is
constrained by a relatively unswollen inner core (see
Appendix I). The shell is soft relative to the comparatively
unswollen core, and the surface pattern has been attributed
to the development of compressive azimuthal stress in the
shell due to its attachment to the core [3]. We have
provided quantitative evidence for this compressive stress
[Figs. 2(b), 2(e), and Appendix H], which is ultimately a
result of the strongly heterogeneous fluid content in the
bead at early times. The fact that the lobes result from a
mechanical constraint implies that they would disappear if
the constraint were removed; indeed, we find that the lobes
disappear locally when a lobed bead is sliced with a blade.
The fact that the lobes result from heterogeneous water
content further implies that the lobes would gradually
vanish if a partially swollen bead were removed from
water, allowing the water content to equilibrate within the
bead; we have verified this experimentally.
The wavelength of the lobes is roughly proportional to

the thickness of the soft shell, which is the relevant length
scale for the instability [8]. However, this is not as simple
as a compressed soft layer bonded to a rigid substrate
[49,51–53]; it is a single material with a continuous
stiffness distribution, where the thicknesses and stiffnesses
of both layers, as well as the compressive total stress that
drives the instability, all evolve with time. This suggests
that the instability cannot be understood in isolation from
the dynamics of swelling.

IV. DYNAMICS OF DRYING

In hydrogels, swelling is reversible. However, the reverse
process—deswelling or drying—has received little atten-
tion. We now consider the fate of a fully swollen hydrogel
bead that is suddenly removed into air. The bead will
subsequently shrink until it reaches equilibrium with its
new environment.

A. Poromechanics of drying

To illustrate the physics of drying,we consider the reversal
of the swelling process shown in Fig. 2 for an identical sphere
(same size and material properties). The sphere is initially
fully swollen ( ~a0 ¼ 6 for ~μ⋆f;0 ¼ 0) and, at ~t ¼ 0þ, it is
suddenly removed to a dry environment with corresponding
ambient chemical potential ~μ⋆f ≪ ~μ⋆f;0, which provides the
incentive for drying. The final statewill be a new equilibrium
state in which the sphere is nearly dry ( ~aeq ¼ 1.07 for
~μ⋆f ¼ −5 × 103). We solve the problem numerically, as
before, and typical results are shown in Fig. 4.
We find that the transient evolution during drying is

strikingly different from swelling, despite the fact that the
ambient conditions and the initial and final states are
precisely reversed from swelling. This is a signature of
the nonlinearity of large deformations—for small deforma-
tions, drying is essentially a mirror image of swelling (see
Appendix K).
Drying propagates inward over time as a sharp drying

front. Behind (outward of) this front is a thin outer region in
which the polymer chains are in strong azimuthal tension
[Fig. 4(e)]. Ahead of (inward of) this front is a quiescent
core in which everything except the pressure remains at its
initial value until the front arrives. The pressure ahead of
the front rises uniformly and monotonically as the front
progresses inward [Fig. 4(c)]. This reflects the fact that the
fluid within the gel is being squeezed by the tight and
contracting outer shell—the elevated pressure is the
mechanical response to this squeezing, providing the out-
ward force that supports the tensile azimuthal stress in the
shell. Once the drying front arrives at the center, all
quantities decay smoothly toward their final values.

B. Drying experiments

To study drying experimentally, we remove fully swollen
hydrogel beads into air and photograph them at regular
time intervals using a digital camera. Macroscopically, the
most striking aspect of drying is the lack of a surface
instability—the gel remains smooth and spherical through-
out the drying process. This observation is supported by the
model, which shows azimuthal tension rather than com-
pression in the outer layer of the gel. Other authors have
observed patterns during deswelling in gels experiencing a
sharp chemically or thermally induced phase transition
(e.g., Refs. [44,54,55]). In our system, swelling and
deswelling are driven by sudden changes in the ambient
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chemical potential, which leads to a smooth evolution of
the gel structure, and it is not entirely surprising that this
leads to qualitatively different behavior. We do not consider
thermally induced swelling here since our experiments are
approximately isothermal, but it can be readily introduced
by adopting χ ¼ χðTÞ [5].

We plot the time evolution of the average radius for three
beads in Fig. 5(a), and we find that this decreases roughly
linearly with time in all cases. To explain this observation,
we consider the evolution of the drying flux Fd, which is
the flux of water exiting the bead at the surface.
Conservation of volume dictates that this must be given by

FIG. 5. The drying of a spherical gel. (a) Time evolution of the radii of three different gel beads after removal from water to air,
showing experimental data (blue, orange, and yellow, shifted vertically by 0, 0.66, and 1, respectively, for clarity) and the prediction of
the model (dashed gray). (b) Time evolution of the drying flux from the experiments and the model. The experiments exhibit a drying
flux that is nearly constant in time, F⋆

d ≈ 0.284, 0.234, and 0.232 mmh−1 ( ~F⋆
d ≈ 50.8, 38.6, and 48.2, respectively), with some small

variations that may be due to variation in the ambient relative humidity over the long duration of drying, or because the assumption of a
constant drying rate is a crude approximation to the true dynamics of water transport in the room. Swelling data for these beads is shown
in Fig. 3 (same colors) and we determine the best-fit material properties from the swelling results.

FIG. 4. Free drying: Spatial distributions of (a) porosity ϕf, (b) radial effective stress ~σ0r, (c) pressure ~p, (d) displacement ~us,
(e) azimuthal effective stress ~σ0θ, and (f) chemical potential ~μf (all dimensionless) at ~t ¼ 0 and then several times logarithmically spaced
between ~t ¼ 10−12 and 10−3 (light to dark red). These results are for the same material properties used in Fig. 2, but the ambient
conditions and the initial and final states are precisely reversed. The arrows guide the eye through the time evolution, which is strikingly
different from swelling (cf. Fig. 2).
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Fd ≡ −
1

4πa2
d
dt

�
4

3
πa3

�
¼ −

da
dt

→ ~Fd ¼ −
d ~a
d~t

: ð30Þ

We can therefore calculate Fd directly from the exper-
imental measurements and from the model [Fig. 5(b)]. In
the absence of other constraints, the drying flux evolves
naturally with the rate of internal water transport to the
surface of the bead. We refer to drying under these
conditions as “free drying.”
We find that free drying is much faster than swelling.

Swelling is resisted by the elastic stress in the polymer
chains, which must be stretched to expand the pore space;
drying, in contrast, is accelerated by the relaxation of elastic
stress in the polymer chains, which helps to squeeze water
out of the bead. For the beads shown Fig. 5, the model
predicts that these beads would dry completely in a matter
of minutes under free-drying conditions (see Appendix M),
but our experiments take ∼15 h. This demonstrates
clearly that the experiments are not in a state of free drying.
The drying flux in the experiments can also be con-

strained externally by the rate of water transport away from

the surface of the bead since residual water will shield the
bead from the true ambient chemical potential. In our
experiments, this water transport occurs by evaporation.
The linear decrease of the radius with time suggests that the
drying flux due to evaporation is roughly constant. To
account for this constraint in the model, we assume that
ambient conditions lead to a maximum evaporation rate F⋆

d.
When the natural drying rate FdðtÞwould otherwise exceed
F⋆
d, we assume that excess moisture accumulates on the

outside of the bead or in the air, shielding the bead from
the true ambient chemical potential μ⋆f . We impose this
as a constraint by dynamically adjusting μ⋆f to ensure that
FdðtÞ ≤ F⋆

d. Measuring F⋆
d from our experiments, we find

that this model is indeed able to reproduce the dynamics of
evaporation-limited drying [Figs. 5(a) and 5(b)].
We use the model to study evaporation-limited drying in

more detail, presenting results for several values of F⋆
d in

Fig. 6 (see also, Appendix L). For finite F⋆
d, drying of a

swollen bead takes place in two stages. At early times, the
radius of the bead decays linearly with time [Fig. 6(a)]. The
slope of this linear regime is controlled by F⋆

d, as evidenced

FIG. 6. Using the model, we study evaporation-limited drying: (a) Evolution of the outer radius ~a, (b) drying flux ~Fd, (c) porosity at
the outer radius ϕfð ~a; ~tÞ, and (d) maximum azimuthal stress maxrf ~σ0θg for ~F⋆

d → ∞ (free drying, black line) and then for nine values

logarithmically spaced between ~F⋆
d ¼ 1 × 105 and 1 × 103 (dark to light colors). Note that free drying exhibits a maximum drying rate

of about 1.5 × 105 for these parameters, so any value of ~F⋆
d greater than this would be equivalent to free drying.
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by the plateau in the flux at early times [Fig. 6(b)]. We show
in the inset of Fig. 6(b) the values of the flux at t ¼ 0 as a
function of F⋆

d. At later times, the radius decreases more
slowly and eventually saturates to an equilibrium state
[Fig. 6(a)]. The crossover times for the various values of
F⋆
d are marked on Fig. 6 as vertical dashed lines. Physically,

this transition can be understood as a crossover between an
early regimewhere drying is limited bywater transport away
from the bead, so that the drying dynamics are controlled by
the ambient conditions through the value of F⋆

d , to a late
regimewhere drying is limited by water transport within the
bead. As the bead dries, the porosity field becomes increas-
ingly heterogeneous [Fig. 4(a)]. In particular, its outermost
layer shows a very low porosity compared to its center. As
the porosity decreases, so does the typical pore size. Thus, it
becomes increasingly hard for water molecules to reach the
surface. We find evidence of this in the agreement between
the crossover time scale measured from Fig. 6(b) and the
time at which the porosity reaches its equilibrium value at
the surface of the bead, as shown on Fig. 6(c).

C. Fracture during drying

Evaporation-limited drying involves a competition
between water transport within the bead and water transport
away from the bead. In free drying and for large ~F⋆

d, water
initially escapes the surface of the bead much faster than it
can diffuse through the pore structure and the water content
becomes highly heterogeneous. This leads to large internal
tensile stresses with a maximum value close to the surface,
and this maximum stress increases with ~F⋆

d. For strongly
limited drying (small ~F⋆

d), the water content within the bead
is less heterogeneous because the water has more time to
redistribute. At very low values of ~F⋆

d , the water content
within the bead is nearly homogeneous and drying can be
captured with a quasistatic model (see Appendix J). We plot
the time evolution of the maximum azimuthal stress within
the bead maxrf ~σ0θg for various values of ~F⋆

d in Fig. 6(d).
This maximum occurs at t ¼ 0 for large ~F⋆

d, but decreases
and then shifts to later times as ~F⋆

d decreases.
We plot the overall maximum azimuthal stress during

drying maxr;tf ~σ0θg as a function of ~F⋆
d in Fig. 7. The overall

maximum stress increases with ~F⋆
d from a minimum value in

the quasistatic limit (maxr;tf ~σ0θg ¼ 0.385 for ~F⋆
d ≪ 102) to a

maximum value in the free-drying limit (maxr;tf ~σ0θg ¼ 29.8
for ~F⋆

d > 1.2 × 105). The curve has a noticeable disconti-
nuity in its slope near ~F⋆

d ¼ 5 × 104, to the right of which the
overall maximum stress occurs at t ¼ 0 and to the left of
which this occurs at later times. For free drying, the initial
evaporation rate is ~Fdð0Þ ≈ 1.2 × 105 [Fig. 6(b)], and this
then grows to a maximum value of ~Fd ≈ 1.5 × 105 before
declining monotonically to zero. For the range
1.2 × 105 < ~F⋆

d < 1.5 × 105, ~Fdð0Þ is then insensitive to
~F⋆
d since drying is not limited by evaporation until ~FdðtÞ

reaches ~F⋆
d . As a result, the overall maximum stress jumps to

its free-drying value near ~F⋆
d ¼ 1.2 × 105, which is in the

range where the overall maximum stress occurs at t ¼ 0 and
the initial drying behavior is not limited by evaporation.
Drying is completely free for ~F⋆

d > 1.5 × 105. As a conse-
quence, a plateau develops in the overall maximum stress for
~F⋆
d > 1.2 × 105, and this plateau takes the value correspond-

ing to free drying. The resulting range of stresses spans 2
orders of magnitude and can readily exceed the typical
fracture stress of hydrogels (Fig. 7). Although our drying
experiments arewell below the fracture threshold (cf. Figs. 5
and 7), we have verified experimentally that accelerated
drying can indeed result in fracture. A detailed experimental
investigation of drying-induced fracture is beyond the scope
of the present study, but will be the subject of future work.
Fracturing due to the development of heterogeneous water
content is also well known as a pattern-forming process in
drying suspensions [57,58].

V. CONCLUSIONS

Hydrogels are remarkable porous materials that can
exhibit extreme but reversible changes in volume by
imbibing or expelling hundreds of times their own weight
in water in response to external stimuli. Hydrogels have
great potential in applications ranging from sensing to drug
delivery, and are already widely used in applications such
as moisture absorption and soft contact lenses. A clear

FIG. 7. Fracture during drying. Dimensional overall maximum
azimuthal stress experienced by the bead during drying
maxr;tfσ0θg as a function of the dimensionless maximum evapo-
ration rate ~F⋆

d . The black dash-dotted line represents the overall
maximum azimuthal stress level in quasistatic drying for
~F⋆
d ≪ 102. For ~F⋆

d ≥ 1.2 × 105, maxr;tfσ0θg jumps to its free-
drying value. We plot as horizontal black dotted lines typical
values of fracture stresses for polyacrylamide hydrogels [56].
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understanding of the dynamics of swelling and drying is
essential for engineering design, from optimizing the rate of
drug release to avoiding cracking in reusable sensors or
actuators, but the vast majority of previous work on gels has
focused on their equilibrium chemical physics, or has been
limited to relatively small volume changes.
Beginning with the theory of ideal elastomeric gels, we

have provided a concrete poromechanical interpretation for
swelling and drying by introducing the classical Terzaghi
decomposition of total stress into effective stress and pore
pressure. We have provided a detailed exploration of the
internal mechanics of these processes, as well as a
quantitative comparison between experiment and theory
for the dynamics of swelling and drying, with the gel
increasing or decreasing in volume by a factor of about 200.
In doing so, we have highlighted the striking and transient
differences between swelling and drying. An important
implication of our results is that both the compressive total
stresses during swelling and the tensile effective stresses
during drying can be minimized by swelling or drying
slowly, as demonstrated by our quantitative investigation of
the role of external constraints on the drying rate and their
implications for fracturing during drying.
This study is an important step toward understanding the

transient mechanics of swelling and drying. In particular, a
clear direction for future work is the exploration of swelling
and drying in 3D, which would allow for other geometries
and for capturing the elastic instability. We highlight the
role of the evaporation rate on the risk of fracture during
drying, but much is left to explore in terms of the other
parameters of the model. For example, the impact of
different solvents and the presence of other solutes are
central to applications in biomedical engineering. The
framework described here will also be useful for under-
standing swelling driven by other environmental stimuli,
such as temperature, with relevance to biological processes
and industrial applications.

ACKNOWLEDGMENTS

T. B. was supported in part by the Yale School of
Engineering & Applied Science Advanced Graduate
Leadership Program. J. P. acknowledges the assistance of
Natacha Macé and Norio Yonezawa for assistance in some
of the experiments. S. M. was supported in part by NSF-
DMR 1410157.

APPENDIX A: SWELLING IN AN
EULERIAN FRAME

In an Eulerian frame, it is natural to work with so-called
true quantities, which measure the current stresses, fluxes,
etc., acting on or through the current (deformed) areas or
volumes. For example, the true porosity ϕf measures the
current fluid volume per unit current total volume. The
solid displacement field is

us ¼ x −Xðx; tÞ; ðA1Þ
where x is the Eulerian (spatial) coordinate and Xðx; tÞ is
the reference position of the material that is currently at
position x. We define the deformation gradient tensor F
through its inverse,

F−1 ¼ ∇X ¼ I − ∇us; ðA2Þ
where I is the identity tensor. The porosity is related to the
Jacobian determinant J via

J ¼ detF ¼ 1

1 − ϕf
; ðA3Þ

where we assume that the fluid and solid constituents are
individually incompressible and that the reference state is
relaxed and dry (us ¼ 0 → σ0 ¼ 0, ϕf ¼ 0). Continuity
requires that

∂ϕf

∂t þ ∇ · ðϕfvfÞ ¼ 0 and ðA4aÞ
∂ϕs

∂t þ ∇ · ðϕsvsÞ ¼ 0; ðA4bÞ

where vf and vs are the fluid and solid velocities and the
true flux of fluid through the solid skeleton is (see
Appendix E)

wf ¼ ϕfðvf − vsÞ ¼ −
kðϕfÞ
ηΩf

∇μf: ðA5Þ

In the absence of body forces, mechanical equilibrium
requires that

∇ · σ ¼ 0; ðA6Þ
where the true total stress σ is related to the true effective
stress σ0 and the pore pressure p via

σ ¼ σ0 − pI: ðA7Þ
Finally, the chemical potential μf is given by

μf
Ωf

¼ p − Π ðA8Þ

and the general expression for the Gaussian-chain con-
stitutive law is [22]

Jσ0 ¼ kBT
Ωp

ðFFT − IÞ: ðA9Þ

APPENDIX B: SWELLING IN
A LAGRANGIAN FRAME

In a Lagrangian frame, it is natural to work with so-called
nominal quantities, which measure the current stresses,
fluxes, etc., acting on or through the reference (relaxed)
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areas or volumes. For example, the nominal porosity Φf
measures the current fluid volume per unit reference total
volume, and is related to the true porosity via Φf ¼ Jϕf.
We denote the gradient and divergence operators in the
Lagrangian coordinate system by gradð·Þ and divð·Þ,
respectively, to distinguish them from the corresponding
operators in the Eulerian coordinate system. The solid
displacement field is

Us ¼ xðX; tÞ −X; ðB1Þ
where X is the Lagrangian (material) coordinate and
xðX; tÞ is the current position of the material associated
with reference positionX. The deformation gradient tensor
is then

F ¼ gradðxÞ ¼ Iþ gradðUsÞ: ðB2Þ
The nominal porosity is related to the Jacobian
determinant by

J ¼ detF ¼ 1þ Φf: ðB3Þ
Continuity requires that

∂Φf

∂t þ divðWfÞ ¼ 0; ðB4Þ

where Wf is the nominal flux of fluid through the solid
skeleton,

Wf ¼ −JF−1F−T kðϕfÞ
ηΩf

gradðμfÞ: ðB5Þ

Mechanical equilibrium requires that

divðsÞ ¼ 0; ðB6Þ
where the nominal total stress s is related to the nominal
effective stress s0 and the pore pressure p via

s ¼ s0 − JF−Tp; ðB7Þ
where

s ¼ JσF−T and s0 ¼ Jσ0F−T: ðB8Þ
The chemical potential is again given by

μf
Ωf

¼ p − Π: ðB9Þ

APPENDIX C: COMPOSITION, POROSITY,
AND FREE ENERGY OF MIXING

The free energy of mixing Fmix is typically taken to be a
function of the true number density of water molecules nf,
or that of polymer molecules np (number of molecules per
unit volume of mixture). These densities can then be related

to the porosity ϕf, which measures the volume of fluid per
unit volume of mixture,

ϕf ¼ Ωfnf ¼ 1 −Ωpnp; ðC1Þ
whereΩf andΩp are the volume per molecule of water and
polymer, respectively, in their unmixed states. It is typically
assumed that these volumes are unchanged upon mixing
and deformation. Recalling that ϕf is related to the
Jacobian determinant J via Eq. (A3), we have that

J ¼ 1

1 − ϕf
¼ 1

1 −Ωfnf
¼ 1

Ωpnp
: ðC2Þ

The local chemical composition is therefore uniquely
characterized by ϕf or J. Note that the nominal number
densities Nf and Np (number of molecules per unit
reference volume of dry polymer) are related to the true
number densities via Nf ¼ Jnf and Np ¼ Jnp.

APPENDIX D: FLORY-HUGGINS FREE ENERGY

For a polymer solution, the classical Flory-Huggins
free energy of mixing per unit reference volume can be
written [36,37]

Fmix ¼ J
kBT
Ωf

�
ϕf lnϕf þ

1

α
ϕs lnϕs þ χϕfϕs

�
; ðD1Þ

where ϕs ≡ 1 − ϕf is the true solid fraction. The prefactor
J converts the free energy per unit current volume to the
free energy per unit reference volume. The first two terms
in square brackets reflect the entropy of mixing, where α is
a measure of the volume per polymer chain relative to the
volume per fluid molecule in the mixture. The third term in
square brackets reflects the enthalpy of mixing, where χ is
the dimensionless interaction parameter. It is straightfor-
ward to rewrite this expression in terms of J.
Although the two parameters α and χ have meaningful

physical interpretations, these are typically used as fitting
parameters to account for the various approximations
embedded in this theory (e.g., Refs. [22,23,33]).

APPENDIX E: TRANSPORT LAW

The true flux of fluid through the solid skeleton is often
modeled as a diffusive process driven by gradients in
chemical potential,

wf ¼ ϕfðvf − vsÞ ¼ −
DðϕfÞ
kBTΩf

∇μf; ðE1Þ

where kB is the Boltzmann constant, T is the absolute
temperature, and DðϕfÞ is the effective diffusion coeffi-
cient. The effective diffusion coefficient is, in general, a
function of the local composition, as measured by ϕf. From
the perspective of chemical kinetics, this can capture linear
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diffusion (Fick’s law) by takingDðϕfÞ ¼ D0, whereD0 is a
constant, or type-II diffusion with a flux proportional to the
local volume fraction of fluid by taking DðϕfÞ ¼ D0ϕf.
From the perspective of flow through porous media, this
can be reinterpreted as Darcy’s law by taking
DðϕfÞ ¼ ðkBT=ηÞkðϕfÞ, where η is the dynamic viscosity
of the fluid and kðϕfÞ is the permeability of the solid
skeleton. Fick’s law and Darcy’s law provide equivalent
descriptions of water transport within the gel (see
Ref. [41]).
The form of the permeability function should incorporate

the geometry of the polymer network, with the most
important feature being that the permeability should
increase very strongly with increasing fluid content. For
polymeric gels, the frictional drag f between water and
polymer is typically taken to be inversely proportional to
the square of the characteristic mesh size l, or f ∼ l−2. The
mesh size is itself related to the correlation length (distance
between cross-links), and can be taken to be proportional
to ð1 − ϕfÞ−3=4 [42]. This leads to f ∼ ð1 − ϕfÞ3=2, and
therefore to a permeability function kðϕfÞ ∼ ϕff−1 ∼
ϕfð1 − ϕfÞ−β with β ¼ 3=2. This expression has sub-
sequently been used in a variety of studies, some of which
take β as an empirical fitting parameter [33,43].
Here, we simply take β ¼ 3=2 (cf. Eq. (18)) and our

modeling predictions ultimately agree very well with our
experimental results for this value. Of course, the model
itself is valid for any form of the permeability law
[Eq. (19)]. The precise form is unlikely to change the
qualitative features of swelling and drying, which is
ultimately the focus of our study.

APPENDIX F: NUMERICAL INTEGRATION

To formulate a finite-volume scheme, we first divide the
interval ~r ¼ ½0; ~a� into N elements of equal size δ~r ¼ ~a=N,
where element i has its center at ~ri ¼ ði − 1=2Þδ~r and its
left and right edges at ~ri−1=2 ¼ ði − 1Þδ~r and ~riþ1=2 ¼ iδ~r,
respectively. We then calculate

∂
∂~t δ~r ¼

1

N
d ~a
d~t

¼ δ~r
~a
d ~a
d~t

; ðF1aÞ

and

∂
∂~t ~ri ¼ ði − 1=2Þ d

d~t
δ~r ¼ ~ri

~a
d ~a
d~t

: ðF1bÞ

We then integrate the conservation law over element i,
Z

~riþ1=2

~ri−1=2

4π ~r2d~r

�∂ϕf

∂~t −
1

~r2
∂
∂ ~r

�
~r2ð1 − ϕfÞ~kðϕfÞ

∂ ~μ
∂ ~r

��
¼ 0:

ðF2Þ
After some algebra, and making use of Eqs. (F1) and the
Leibnitz integral rule, we arrive at

4

3
πð~r3iþ1=2 − ~r3i−1=2Þ

�∂ϕf;i

∂~t þ 3ϕf;i

~a
d ~a
d~t

�

− 4π

�
~r3ϕf

~a
d ~a
d~t

þ ~r2ð1 − ϕfÞ~kðϕfÞ
∂ ~μf
∂ ~r

�����
~riþ1=2

~ri−1=2

¼ 0; ðF3Þ

FIG. 8. The size of a hydrogel sphere in air is effectively
independent of Ωf=Ωp. Top: Properties of the equilibrium state
for a wide range of ambient conditions ( ~μ⋆f) with material
propertiesΩf=Ωp ¼ 1.28 × 10−4, α ¼ 250, and χ ¼ 0.4. Middle:
Actual equilibrium size in air ~aair as a function of Ωf=Ωp for
several values of RH (colors) compared with the value of ~aair for
the same RH for Ωf=Ωp → 0 (dashed gray). Bottom: The relative
error between the colored and gray curves from the middle figure.
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where ϕf;i is the mean porosity in element i. We then
require boundary conditions at ~r ¼ 0 and ~r ¼ ~a, for which
it is useful to recall that the second term in square brackets
is precisely equal to −~r2ϕf ~vf [see Eq. (15a)]. At ~r ¼ 0, the
entire quantity in square brackets must vanish. At ~r ¼ ~a,
the entire quantity is identically equal to ~a2d ~a=dt.
At each time step,we calculateus fromϕf via Eq. (14).We

then calculate λr, λθ, and J from us, then σ0r, σ0θ, and Π from
the constitutive laws, and then ∂ ~μf=∂ ~r from Eq. (20). We
finally use this to update the porosity according to Eq. (F3).

APPENDIX G: EQUILIBRIUM SIZE IN AIR

The equilibrium size in air is effectively independent of
Ωf=Ωp because, for ~μ⋆f less than about −102, the mechani-
cal contributions to the equilibrium state ( ~p and ~σ0) become
negligible relative to the chemical contributions ( ~μ⋆f and
~Πmix) since the polymer chains are nearly relaxed [see the
main text, after Eqs. (29)]. We plot the magnitudes of these
contributions against ~μ⋆f in Fig. 8 (top). We confirm this in
Fig. 8 (middle and bottom) by plotting the equilibrium size
against Ωf=Ωp for several values of ~μ⋆f (RH) and compar-
ing these with the dry size for Ωf=Ωp → 0.

APPENDIX H: COMPRESSIVE AND TENSILE
STRESSES DURING SWELLING

During swelling, the outer shell is in a strong and
anisotropic state of compression, while the inner core is
in a more isotropic state of tension (Fig. 9).

APPENDIX I: EVIDENCE OF A
CORE-SHELL STRUCTURE

The porosity within the sphere becomes heterogeneous
during swelling, developing a core-shell structure. Direct
observation of the core-shell structure is complicated by the
fact that the sphere is transparent, and the swollen region is
almost entirely water. Barros, Jr., et al. [8] provided the first
direct observation of this by imaging a swelling sphere
using nuclear magnetic resonance (NMR). Here, we
achieve a similar result with a shadowgraph technique
(Fig. 10). We obtain images by collimating light from a
powerful laser source (1W, 532 nm) via a ShadowStrobe
lens (Dantec Dynamics). We identify the position of the
core-shell interface via an intensity threshold and we plot
the evolution of the core-shell structure in Fig. 10. At early
times, both core and shell grow as the sphere swells. Later,
the core shrinks as water eventually imbibes into the core
of the bead. The interface position detected through this
method is qualitative since the relationship between light

FIG. 9. Space-time evolution of (top) the mean total stress ~̄σ ¼
ð ~σr þ ~σθÞ=2 and (bottom) the shear stress ~τ ¼ j ~σr − ~σθj=2. The
colors show signð ~σÞ log j ~σj, where blue tones are compressive,
red tones are tensile, and the dashed black line in the top panel
indicates the contour of zero mean total stress.

FIG. 10. We image the swelling process using a shadowgraph
technique, revealing two distinct regions in the internal structure:
A dark, low-porosity core surrounded by a light, high-porosity
shell (inset). Thresholding this image provides the time evolution
of the outer radius of the core ai and of the sphere a, which
together define the shell. We shade the core and shell regions in
orange and blue, respectively.
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intensity and polymer density is unknown and likely
nonlinear, but our findings are consistent with the pre-
dictions of our model.
In contrastwith our observations, theNMRexperiments of

Barros, Jr., et al. [8] and Engelsberg and Barros, Jr. [33]
suggest a strictly shrinking core. To reconcile this apparent
disagreement, we plot in Fig. 11 the predictions of our model
for the location of several isolines of porosity against time.
We find that, for porosities greater than about 0.5, the isolines
initially advance and then retreat. For smaller porosities, the
isolines strictly retreat. Assuming that the core revealed by
both shadowgraph and NMR is roughly coincident with a
certain porosity threshold, this then indicates that the
apparent evolution of the core will depend on the threshold
value associated with each technique. The qualitative agree-
ment between the evolution of the core from our shadow-
graph experiments (Fig. 10) and the evolution of porosity
isolines from the model for ϕf > 0.5 (Fig. 11) supports the
kinetic predictions of the model and further underscores its
usefulness for interpreting experimental results.

APPENDIX J: QUASISTATIC MODEL

When the flux of fluid out of the bead during drying
is strongly limited (e.g., by evaporation), drying can
be modeled as a quasistatic process in which the sphere is
internally homogeneous. The same is true of flux-limited
swelling. To develop amodel for this,we first assume that the
drying flux is controlled by the evaporation limit,

~Fd;qs ¼ −
d ~aqs
d~t

¼ ~F⋆
d: ðJ1Þ

This can be integrated to give

~aqsð~tÞ ¼
�

~a0 − ~F⋆
d~t for ~t ≤ ~teq

~aeq for ~t > ~teq;
ðJ2Þ

where ~teq ¼ ð ~a0 − ~aeqÞ= ~F⋆
d and ~aeq is the final equilibrium

size for thedesired valueof ~μ⋆f .We can then calculate all other
quantities from Eqs. (29) by replacing ~aeq with ~aqsð~tÞ. In
particular, the uniform and isotropic effective stresses are
given by

~σ0qsð~tÞ ¼ ~σ0r;qsð~tÞ ¼ ~σ0θ;qsð~tÞ ¼ ½ ~aqsðtÞ2 − 1�= ~aqsðtÞ3: ðJ3Þ

It is then trivial to show that the effective stress has a tensile
maximum of maxtf ~σ0qsg¼ 2=ð3 ffiffiffi

3
p Þ≈0.3849 at ~aqs ¼

ffiffiffi
3

p
.

We plot ~aqs and ~σ0qs against ~t in Fig. 12.

APPENDIX K: TIME REVERSIBILITY
OF SMALL DEFORMATIONS

For small changes in size, swelling and drying are
essentially mirror images of each other because the strong

FIG. 11. The positions of several isolines of porosity during
swelling. The black line marks the outer radius of the sphere and
the inset highlights the early-time evolution.

FIG. 12. Evolution of the outer radius ~aqs and the effective
stress ~σ0qs during strongly limited drying from the full model
(solid blue) and from the quasistatic model (dashed yellow).
Parameters are the same as Fig. 4, but with ~F⋆

d ¼ 1.
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nonlinearity of large deformations is absent. We show
swelling in Fig. 13 and drying in Fig. 14.

APPENDIX L: EVAPORATION-LIMITED
DRYING

We plot in Fig. 15 the evolution of a sphere during
evaporation-limited drying (cf. Fig. 4). We enforce the limit
~FdðtÞ ≤ ~F⋆

d by calculating, at every time, a new ambient
value ~μ⋆f;dðtÞ for which ~FdðtÞ ¼ ~F⋆

d when ~μfð ~a;~tÞ¼ ~μ⋆f;dðtÞ.
We then impose ~μfð ~a; ~tÞ ¼ maxf ~μ⋆f; ~μ⋆f;dðtÞg so that this
constraint can only slow the drying process. As a result,
~μ⋆f;dðtÞ evolves gradually toward the true ambient value ~μ⋆f

rather than adopting it immediately, as it would in free
drying. This leads to much lower azimuthal effective
stresses and much weaker gradients in porosity near the
outer boundary.

APPENDIX M: DRYING EXPERIMENTS:
FREE DRYING

To illustrate that our drying experiments are not in a state
of free drying, we plot in Fig. 16 the time evolution of a=ad
and Fd for the same parameters as Fig. 5, but taking
F⋆
d → ∞ (i.e., free drying). Note the very short time scale

and the very large drying fluxes compared to the data.

FIG. 13. Free swelling for a small change in size, from ~a0 ¼ 1.067 to ~aeq ¼ 1.078 ( ~μ⋆f;0 ¼ −5 × 103 to ~μ⋆f ¼ −4.3 × 103). Same
material properties as Fig. 4.

FIG. 14. Free drying for a small change in size. Same material properties as Fig. 13, but with initial and final states reversed.
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