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We propose a “phase diagram” for particulate systems with purely repulsive contact forces, such as granular
media and colloids. We characterize two classes of behavior as a function of the input kinetic energy per degree
of freedom T0 and packing fraction deviation from jamming onset �φ = φ − φJ using simulations of frictionless
disks. Isocoordinated solids (ICS) exist above jamming; they possess an average contact number equal to the
isostatic value ziso. ICS display “strict” harmonic response, where the density of vibrational modes from the
Fourier transform of the velocity autocorrelation function is a set of sharp peaks at eigenfrequencies ωd

k of
the dynamical matrix. In contrast, hypocoordinated solids (HCS) occur above and below jamming and possess
fluctuating networks of interparticle contacts but do not undergo cage-breaking particle rearrangements. The
density of vibrational frequencies for the HCS is not a collection of sharp peaks at ωd

k , but it does possess a
common form over a range of �φ and T0.
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I. INTRODUCTION

The vibrational response of conventional solids, such as
metals, ceramics, and minerals, can be described by the
harmonic approximation at sufficiently low temperatures
compared to the melting points [1]. Nonlinearities stemming
from weak structural disorder and the shape of the interaction
potential explored at low temperatures can be treated as small
perturbations [2]. Particulate systems, such as granular media
[3] and colloids [4], can also exist in solidlike states in the limit
of weak driving or thermal fluctuations. However, in contrast to
molecular-scale solids, where interactions extend beyond one
atomic diameter, the interactions in many particulate solids are
purely repulsive and vanish when particles come out of contact.
Even small changes in the contact network in purely repulsive
particulate solids (both crystalline and disordered) can give
rise to strong nonlinearities in the vibrational response [5–7].
This occurs whenever the number of instantaneous contacts
between particles is less than the number of degrees of freedom
in the system, which causes zero eigenvalues in the dynamical
matrix. Such contact-breaking nonlinearities do not occur in
conventional solids with interactions that extend well beyond
a particle diameter [8], because there are significantly more
interactions in these systems than degrees of freedom [9].

In spite of these nonlinearities, a major emphasis of the
literature for jammed particle-based solids in the past decade
has been to invoke the harmonic approximation for static
packings to provide insight into structural relaxation of dense
liquids near the glass transition [10,11]. However, one of
the most obvious and important questions has been left
unanswered: what is the measured response of static packings
near jamming onset when they are subjected to vibrations? In
this manuscript, we do not rely on the harmonic approximation
to infer vibrational behavior. Instead, we measure directly the
vibrations of model particulate systems as a function of the
packing fraction deviation from jamming onset �φ = φ − φJ

and input kinetic energy T0.

We identify two classes of behavior in the �φ and T0 plane
near jamming, as shown in Fig. 1: iso- and hypocoordinated
solids (ICS and HCS), which are distinguished by the time-
averaged contact number 〈z〉 and density of vibrational modes
D(ω). For the ICS, with �φ > �φc(T0) > 0, the contact
network does not change from that at T0 = 0, the contact
number remains at the isostatic value, 〈z〉 = ziso, and the
vibrational response is harmonic, with strong peaks in the
Fourier transform of the velocity autocorrelation function
at the dynamical matrix eigenfrequencies. HCS occur both
above and below φJ [12] in the region defined by �φ+(T0) >

�φ > �φcb(T0). In HCS, the network of interparticle con-
tacts fluctuates with 〈z〉/ziso < 1, the vibrational response is
strongly nonharmonic, and the form of D(ω) depends on the
measurement method. In the regime �φ < �φcb(T0), cage-
breaking particle rearrangements occur and D(ω) resembles
that for dense liquids (DL).

II. METHODS

We measure the vibrational response of mechanically stable
(MS) packings of N bidisperse frictionless disks with mass m

that interact via the pairwise purely repulsive potential

V (rij ) = ε

2

(
1 − rij

σij

)2

�

(
1 − rij

σij

)
, (1)

where rij is the separation between disk centers, σij = (σi +
σj )/2 is the average disk diameter, ε is the energy scale of the
repulsive interaction, and �(x) is the Heaviside step function.
The bidisperse mixtures contained half-large and half-small
disks by number with diameter ratio r = σ2/σ1 = 1.4. We
focus on the �φ → 0 limit, for which the MS packings possess
the isostatic number of interparticle contacts N iso

c = 2N − 1,
where N = N ′ − Nr and N is the number of particles after
Nr rattler particles with fewer than three contacts have been
removed.
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FIG. 1. (Color online) (a) Phase diagram for the vibrational
response of MS packings versus �φ and T0, illustrated by heating and
compressing (or decompressing) a single N = 10 packing at �φ = 0
and T0 = 0 with a typical cage-breaking rearrangement temperature
Tcb. The shading gives the time-averaged contact number 〈z〉/ziso. For
0 < �φ < �φc(T0) (data and scaling curve given by open squares
and solid line), the contact network for the ICS does not change from
that at T0 = 0 and the vibrational response is strictly harmonic. The
midpoint T0 at which 〈z〉/ziso crosses over from 1 to 0.5 defines the
boundary �φ+(T0) (dot-dashed line with slope 0.5). In the HCS,
the contact network fluctuates with 〈z〉/ziso < 1, but there are no
particle rearrangements as in the DL regime with �φ < �φcb(T0)
(dashed line). (b) 〈z〉/ziso versus T0 for a typical N = 10 packing
compressed (decompressed) to �φ = ±10−7, ±10−6, ±2×10−5,
and ±2 × 10−4 (circles and squares) from left to right. The solid,
dot-dashed, and dashed arrows indicate �φc(T0), �φ+(T0), and
�φcb(T0). (c) Time-averaged 〈z〉/ziso versus T0 for typical MS
packings compressed to �φ = 10−6 at several system sizes: N =
10 (rightward triangles), 16 (squares), 32 (upward triangles), 64
(downward triangles), 128 (stars), 256 (diamonds), 512 (leftward
triangles), and 1024 (circles). Note that there is weak system-size
dependence for 〈z〉/ziso prior to particle rearrangement events.

We generate MS packings at �φ0 = 10−8 using the succes-
sive compression and decompression protocol described previ-
ously [13] for system sizes from N = 10–1024. Each packing
was then decompressed or overcompressed in a single step to
−10−2 � �φ � 10−2 followed by conjugate gradient energy
minimization to the configuration �R0 = {x0

1 ,y
0
1 , . . . ,x0

N,y0
N }.

We perturbed each system at �R0 by exciting equal kinetic
energy in each mode [14]. We selected initial particle velocities
�v = {vxi,vyi, . . . ,vxN ,vyN } according to

vn = δ

2N−2∑
k=1

ek
n, (2)

where êk are the 2N − 2 eigenvectors (corresponding to
the nonzero eigenvalues) of the dynamical matrix [15]
evaluated at �R0, (êk)2 = 1, and δ is chosen so that T0 =
ε−1 ∑

i
1
2mv2

i /(2N − 2) is in the range 10−20 � T0 � 10−1.
We then integrated Newton’s equations of motion at constant
total energy and area in a square box using the velocity
Verlet algorithm with time step �t = 1/(400π )σ1

√
m/ε. We

first ran the constant energy simulations for 103 oscillations
of the lowest dynamical matrix eigenfrequency ωd

1 and then
quantified fluctuations in particle positions over the next 103

periods (or 103 particle collisions for systems below jamming).
In the strict harmonic regime, the time-dependent particle

positions are described by

Rn(t) = R0
n +

2N−2∑
k=1

Ake
k
n sin

(
ωd

k t + ψk

)
, (3)

where Ak and ψk are the time-independent amplitudes and
phases of the normal modes êk with eigenfrequency ωd

k from
the dynamical matrix. We employed two additional methods to
measure the vibrational response as a function of �φ and T0.
We calculated the Fourier transform of the normalized velocity
autocorrelation function to quantify the density of vibrational
modes [16]

D(ωv) =
∫ ∞

0
dt

〈�v(t0 + t) · �v(t0)〉
〈�v(t0) · �v(t0)〉 eiωvt , (4)

where 〈.〉 indicate averages over all particles and time origins
t0. We also measured the eigenvalue spectrum of S = V C−1

[which equals the dynamical matrix M , provided Eq. (3)
holds], where Vij = 〈vivj 〉 are the elements of the velocity
matrix,

Cij = 〈(
Ri − R0

i

)(
Rj − R0

j

)〉
(5)

are the elements of the displacement correlation matrix
[17], and angle brackets indicate averages over time. Vi-
brational frequencies ωs

k = √
sk can be obtained from the

eigenvalues of S. The binned versions of the density of
vibrational frequencies are given by D(ωs,d ) = [N (ωs,d +
�ωs,d ) − N (ωs,d )]/[N (∞)�ωs,d ], where N (ω) is the number
of frequencies less than ω. D(ωd ), D(ωv), and D(ωs) are
normalized so that

∫ ∞
0 dωD(ω) = 1.

III. RESULTS

In Fig. 2, we show the density of vibrational frequencies
D(ωv) obtained from the Fourier transform of the velocity

062203-2



HYPOCOORDINATED SOLIDS IN PARTICULATE MEDIA PHYSICAL REVIEW E 89, 062203 (2014)

FIG. 2. (Color online) Comparison of portions of the density of
vibrational frequencies D(ω) from the Fourier transform of the
velocity autocorrelation function (lines) and associated with the
dynamical (vertical dot-dashed lines) and displacement correlation
matrices (symbols) in the ICS regime at �φ = 2×10−7 and T0 =
4×10−19 (blue solid lines and circles) and HCS at �φ = 2×10−7

and T0 = 2×10−11 (orange dashed lines and squares) for typical
MS packings with (a) N = 10 and (b) 128. See Appendix D for
a discussion of the finite widths of the distinct peaks in D(ωv) in the
ICS.

autocorrelation function for MS packings at �φ > 0, two
T0, and two system sizes. For sufficiently low T0 in the
ICS, the system displays strict harmonic response. The
fluctuating particle positions are given by Eq. (3), and
D(ωv) = ∑

k=1,2N−2 δ(ωv − ω
d,s
k ) is a set of 2N − 2 δ-

functions at frequencies that correspond to the eigenfrequen-
cies of the dynamical and displacement correlation matrices.
(In Appendix D, we show that D(ωv) in the ICS matches a
discrete Fourier transform of a harmonic function for several
time resolutions.) For larger T0, the instantaneous contact
network deviates from that at T0 = 0, and the vibrational
response is no longer strictly harmonic. In the HCS regime,
we find that ωs

k < ωd
k (assuming the eigenvalues are sorted

from smallest to largest), D(ωv) becomes broad without strong
peaks, and D(ωv), D(ωs), and D(ωd ) do not match. The same
behavior is shown for both N = 10 and 128.

In Fig. 3(a), we show the dependence of the frequencies ωs
k

associated with the displacement correlation matrix versus T0

and �φ for a typical MS packing above and below φJ . For
�φ > 0, ωs

k = ωd
k for all k in the ICS when T0 < Tc(�φ). For

T0 > Tc(�φ) and �φ > 0, the frequencies ωs
k first decrease

with T0 and then each reaches a k-dependent plateau value
ω∗

k < ωd
k that persists for more than 6 orders of magnitude

(at �φ = 10−6). The plateau ends abruptly after a particle re-
arrangement occurs at Tcb(�φ). The range of temperatures T0

over which the plateau in frequency persists and Tcb at which
particle rearrangements occur varies strongly from one MS
packing to another, as shown in Appendix C. Cage-breaking
rearrangements were identified by comparing the particle
positions for energy-minimized configurations �Rmin originally
at T0 > 0 to those for the MS packing �R0 at T0 = 0. For T0 <

Tcb(�φ), the distribution P (�R) of configurational distances

�R =
√

(2N )−1
∑N

i=1[(xmin
i − x0

i )2 + (ymin
i − y0

i )2] [18] has a

strong peak at small �R/σ1 ∼ 10−7 that corresponds to the
precision of the particle positions after energy minimization.
For both �φ > 0 and �φ < 0, P (�R) is bimodal for T �
Tcb(�φ), with an additional well-separated peak at larger �R

from cage-breaking particle rearrangements (see Appendix A).
Note that after the system rearranges, the packing fraction at
jamming onset shifts to φ′

J > φJ , and thus the time-averaged
contact number 〈z〉 drops precipitously at Tcb (Fig. 1). After a
rearrangement, the system can again be described by the phase
diagram in Fig. 1 with �φ = φ − φ′

J .
For �φ � 0, there is no strict harmonic vibrational response

regime. We find that the frequencies ωs
k increase from zero at

T0 = 0 and reach the same k-dependent plateau values ω∗
k as

those for �φ > 0 [19]. These results point to a robust set
of frequencies (distinct from ωd

k ) in HCS, where the contact
network fluctuates, but the average contact number remains
constant over a wide range of T0 at 〈z〉/ziso ≈ 0.5 [Figs. 1(b)
and 1(c)]. We show similar results for crystalline disk packings
with purely repulsive contact interactions in Appendix B.

Motivated by the behavior in the regime �φ < 0, for which
the frequencies ωs

k ∼ √
T0/lc(�φ) scale as the ratio of the

velocity between interparticle collisions and typical cage size
and then reach a plateau ω∗

k at large T0, we propose the scaling
function

ωs
k = ω∗

k

(
1 + lc(�φ)√

T0

)−1

, (6)

where lc is measured in units of σ1. In Fig. 3(b), we show
least-squares fits of the maximum frequency associated with
the displacement correlation matrix ωs

m versus T0 to Eq. (6)
for logarithmically spaced packing fraction deviations below
jamming in the range 10−7 � |�φ| � 10−2, all generated from
the same N = 10 MS packing. (Similar quality fits are found
for all lower frequencies.) Above jamming, ωs

k interpolates
between ωd

k at T0 = 0 and ω∗
k at large T0. The generalized

logistic function,

ωs
k(T0) = ωd

k + ω∗
k − ωd

k(
1 + lc(�φ)

/
T α

0

)ν , (7)

which allows variations of the slope of ωs
k(T0) in the crossover

region, is able to recapitulate ωs
m below and above jamming
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FIG. 3. (Color online) (a) The 2N − 2 frequencies ωs
k associated with the displacement correlation matrix versus T0 for a typical N = 10

packing compressed to �φ = 10−6 (blue circles) or decompressed to −10−6 (red squares). The vertical dot-dashed and dashed lines indicate
for �φ = 10−6 the Tc where the contact network first differs from that at T0 = 0 and Tcb where the energy-minimized configurations differ
from that at T0 = 0. The horizontal dashed lines show the dynamical matrix eigenfrequencies. (b) The maximum frequency ωs

m = maxk ωs
k

versus T0 for 28 logarithmically spaced packing fraction deviations 10−7 � |�φ| � 10−2 above and below jamming generated from the same
N = 10 packing in (a). The solid lines are fits of ωs

m(T0) to Eq. (7). (c) Scaled ωs
m versus T0. The inset shows lc versus |�φ| above and below

jamming. The dashed and dotted lines have slopes 1 and 2.

[Fig. 3(b)]. Below jamming, the best fits give α = 0.5 and
ν = 1, i.e., Eq. (6). Above jamming, α ∼ 0.6 and ν ≈ 0.25l

−1/2
c

over a wide range of �φ. In Fig. 3(c), we show that Eq. (7)
collapses ωs

m from (b) with some deviation at small T0 above
jamming (caused by numerical accuracy when ωs

m ≈ ωd
m). In

the inset to (c), we show that the generalized cage size scales
as lc ∼ �φ below and ∼ (�φ)λ with λ � 2 above jamming.

We summarize our results for the measured vibrational
response of MS packings in the “phase diagram” in Fig. 1.
For �φ > �φc(T0) ∼ Nβ

√
T0/A [5], where A ≈ 0.5 and

β ≈ 0.85, the contact network does not change from that
at T0 = 0. In the ICS, 〈z〉 = ziso, the vibrational response
is strictly harmonic, and the density of vibrational modes
D(ωv) = D(ωs) = D(ωd ) [Figs. 4(a) and 4(b)]. Note that the
size of the ICS decreases and the transition region between ICS
and HCS widens with increasing N . In Fig. 1, we show that the
midpoints of the crossovers in 〈z〉/ziso from 1 to 0.5, which
define �φ+(T0), scale as

√
T0. Assuming that the effective

particle diameter shrinks with
√

T0, we obtain an estimate for

the shift in φJ induced by thermal fluctuations [16,20–22]:

�φs(T0) = φJ

(
1

(1 − √
2T0)2

− 1

)
. (8)

We find that near �φs ∼ �φ+ an extensive number of
changes in the contact network from that at T0 = 0 has
occurred [7]. Similarly, for �φ < 0, an extensive number
of “time-averaged” contacts has formed when �φ > �φ−,
and �φ− also scales as

√
T0. However, we do not distinguish

between regimes when crossing this boundary, because we can
rescale the density of vibrational frequencies D(ωs) from the
displacement matrix for all systems with �φ+(T0) > �φ >

�φcb(T0) onto a master curve [Fig. 4(c)].
In Figs. 4(a) and 4(b), we show the densities of vibrational

frequencies D(ωs) and D(ωv) at �φ = 10−6 for increasing
T0 from ICS to HCS. The density of vibrational frequencies
begins to deviate strongly from the harmonic approximation
when entering HCS [inset to Fig. 4(b)]. In HCS, the den-
sities of vibrational frequencies display scaling forms, but

FIG. 4. (Color online) (a) D(ωs) from the eigenvalues of the displacement matrix and (b) D(ωv) from the Fourier transform of the
velocity autocorrelation function for a typical N = 128 MS packing compressed to �φ = 10−6. The line shadings in (a) and (b) indicate the
time-averaged 〈z〉/ziso and T0 in the inset to (a) for the same packing. The inset to (b) shows the squared distance χ2 between the density of
vibrational frequencies at a given temperature and that at T0 = 0 for D(ωs) (squares) and D(ωv) (circles). (c) D(ωs

r ) (thin lines) for N = 128
obtained by rescaling the frequencies ωs according to Eq. (6) to T ∗

0 < Tcb for systems in HCS at �φ = −10−7. The thick dashed line is the
non-rescaled D(ωs) at T ∗

0 .
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D(ωs) �= D(ωv), e.g., D(ωs) possesses a stronger peak at
low frequencies and opposite curvature at high frequencies.
In the transition regime, �φc(T0) < �φ < �φ+(T0), D(ω)
varies continuously between that for ICS and HCS.

IV. CONCLUSIONS

We emphasize that particulate systems over most of the
�φ and T0 plane near jamming do not display strict harmonic
vibrational response, i.e., D(ωv) is broad, not a set of discrete,
sharp peaks at the dynamical matrix eigenfrequencies ωd

k , and
differs from other measures of the vibrational response. This
implies that when particulate systems are excited by a single
mode ωd

k , the response rapidly spreads to a broad spectrum
of other modes. This result has important consequences for
acoustic transmission [23] and thermal transport [24] in
jammed solids. However, there is a wide swath of parameter
space (corresponding to HCS) where the frequencies ωs or
ωv can be rescaled such that D(ωs,v) separately obeys master
curves. D(ωs,v) in this regime differs from D(ωd ) for �φ > 0
at T0 = 0 and from D(ω) for dense liquids. In future work, we
will measure the specific heat, thermal conductivity, quality
factor, and other macroscopic physical quantities in the ICS
and HCS regions.
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APPENDIX A: BOUNDARIES OF THE “PHASE DIAGRAM”

In this Appendix, we provide details concerning the defini-
tions of the boundaries for the phase diagram in Fig. 1(a) that
delineate the ICS, HCS, and DL regimes as a function of �φ

and T0. In Fig. 5, we show the probability to undergo a cage-
breaking particle rearrangement along with the boundaries of
the phase diagram for the N = 10 packing in Figs. 1(a) and
1(b). We find that for φ > φcb(T0) there are no rearrangements
over the course of the simulations. However, note that the
boundary φcb(T0) will vary with the total time of the simulation,
i.e., particle rearrangements will occur at progressively lower
T0 and larger �φ as the total time of the simulation is increased.
After a particle rearrangement, the system will exist in the
basin of a new static packing with φ′

J > φJ ; however, the
system can still be described by the phase diagram in Fig. 1,
except �φ is given by φ − φ′

J .
In Fig. 6, we show the probability for obtaining separation

�R in configuration space between the packing at �φ

and T0 = 0 and an energy-minimized configuration at �φ

originally heated to T0 for a system with N = 10. For �φ >

�φcb(T0) > 0, we find a strong peak for �R < 10−6, which
indicates that the heated configurations have not undergone
particle rearrangements and the small nonzero �R gives the
resolution of the energy minimization. When T0 increases
above that required for cage-breaking particle rearrangements
at a given �φ, another strong peak forms for �R > 10−1.
For �φ < 0, the peak at small �R for systems that have

FIG. 5. (Color online) Phase diagram showing the ICS, HCS, and
DL regimes in the �φ and T0 plane for a typical N = 10 packing
[cf. Fig. 1(a) in the main text]. The shading shows the probability to
undergo a cage-breaking particle rearrangement at each �φ and T0.

not undergone cage-breaking rearrangements is spread over
several orders of magnitude, but is still well-separated from
the large �R peak. Thus, before cage-breaking particle
rearrangements, the systems are localized near their zero-
temperature configurations.

Here we also provide a justification for the boundary �φs

[Eq. (8)] that separates the ICS and HCS regimes. In Fig. 7,
we show a schematic that illustrates a disk packing undergoing

FIG. 6. (Color online) The probability P (�R) for obtaining sep-
aration �R in configuration space between the zero-temperature
configuration at �φ and configurations that have been thermally
quenched from T0 to zero temperature for N = 10 and �φ = 10−4

(blue solid line) and −10−4 (red dashed line). The vertical dot-dashed
line indicates the threshold �Rc = 0.05, above which we consider
that the system has rearranged.
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FIG. 7. (Color online) Illustration of a packing of disks with
diameter σ that is undergoing thermal fluctuations that give rise
to average particle overlaps of size δ. The dashed particle outlines
indicate position fluctuations at temperature T0.

thermal fluctuations. We consider a system of N thermally
fluctuating disks with diameter σ that interact via purely
repulsive linear spring potentials [Eq. (1)] at temperature

T0 = ε

2

(
δ

σ

)2

, (A1)

where the average overlap between particles scales as

δ ∼
√

2T0

ε
σ. (A2)

Since each disk can fluctuate a typical distance δ at temperature
T0 > 0, the effective diameter of each disk is reduced by δ,
and σs = σ − δ. We can relate the effective jammed packing
fraction φs(T0) at T0 to the jammed packing fraction φJ at
T0 = 0:

φs(T0) = φJ(
1 −

√
2T0
ε

)2
. (A3)

Thus the increase in packing fraction required to rejam the
system at temperature T0 is �φs(T0) = φs(T0) − φJ [Eq. (8)],
which reduces to

�φs(T0) ≈ 2φJ

√
2T0

ε
(A4)

in the T0 → 0 limit.

APPENDIX B: VIBRATIONAL RESPONSE FOR
DISORDERED VERSUS CRYSTALLINE PACKINGS

In this Appendix, we show that the vibrational response
of positionally ordered systems with purely repulsive contact
interactions is similar to that for disordered packings. In Fig. 8,
we compare the vibrational response of (a) amorphous and
(b) crystalline disk packings. In panel (c), we show that the
average number of contacts 〈Nc〉 (normalized by the value at
zero temperature, N0

c ) versus the input kinetic energy T0 is
similar for both disordered and crystalline packings (at least
until cage-breaking particle rearrangements occur). Note that
for the simulations of the amorphous packing in Fig. 8(a),
we did not remove the floater particles with fewer than three
interparticle contacts. We normalized the number of contacts
by N0

c so that we could directly compare the behavior of the
contact number for amorphous and crystalline systems. The
degree to which positional order affects the nonlinearities from
contact breaking is a very interesting question, and this will be
investigated in future studies.

APPENDIX C: SYSTEM SIZE AND
CONFIGURATION DEPENDENCE

In this Appendix, we investigate the system-size depen-
dence and configurational fluctuations of the time-averaged
contact number 〈z〉 as a function of the packing fraction
deviation �φ and input kinetic energy T0. As shown in
Fig. 1(c), the system-size dependence of 〈z〉/ziso is weak
for T0 below the temperature Tcb at which cage-breaking
rearrangement events occur. However, for a given system size,

FIG. 8. (Color online) (a) Disordered packing of N = 64 bidisperse disks in a square periodic cell. Half of the disks are large with diameter
σ2 = 1.4σ1. The “floater” disks with fewer than three interparticle contacts are shaded in black. (b) Packing of N = 64 monodisperse disks on
a triangular lattice in a rectangular periodic cell with dimensions 1×√

3/2. (c) Average number of interparticle contacts 〈Nc〉 normalized by
the number N 0

c at T0 = 0 as a function of the input kinetic energy T0 for the disordered packing (squares) in (a) and the crystalline packing
(circles) in (b) at �φ = 10−6.
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FIG. 9. (Color online) (a) Normalized contact number 〈z〉/ziso versus input kinetic energy T0 for 100 different packings (gray lines) with
N = 128 and �φ = 10−6. The sudden drop in contact number for a given packing indicates a particle rearrangement event. The dashed line
gives the average of 〈z〉/ziso over the 100 packings. (b) Temperature Tcb at which a rearrangement event occurs for each of the 100 packings
for N = 10 (circles), 128 (squares), and 512 (triangles) at �φ = 10−6 as a function of the initial jammed packing fraction φJ .

Tcb fluctuates significantly from one packing to another, as
shown in Fig. 9. Even though the distribution of jammed
packing fractions narrows with increasing system size [25],
we do not find a significant narrowing of the distribution of
Tcb in the large-N limit.

In Fig. 10, we show that the “phase diagram” for the
vibrational response for a N = 128 MS packing is qualitatively
similar to that for an N = 10 MS packing (cf. Fig. 1 in the
main text). The boundary for single contact breaking φc(T0)
shifts to lower T0 and larger �φ with increasing N , which
indicates that the transition region between the ICS and HCS

FIG. 10. (Color online) Phase diagram for the vibrational re-
sponse in the �φ and T0 plane for a N = 128 MS packing
with a typical cage-breaking rearrangement temperature Tcb, where
the shading indicates the time-averaged contact number 〈z〉/ziso

normalized by the isostatic value. The line types and symbols are
the same as in Fig. 1.

grows with system size. This feature is highlighted in Fig. 11,
where we show that the width of the transition region in 〈z〉(T0)
above jamming increases with system size. The fact that the
HCS regime is smaller for the N = 128 packing compared
to the N = 10 packing is mainly a reflection of the large
configuration-to-configuration fluctuations of Tcb, as shown
in Fig. 9(b). The particular N = 128 packing shown in Fig. 10
rearranges at a smaller Tcb than that for the N = 10 packing
in Fig. 1(a). Note that the configurational average of 〈z〉(T0)
differs significantly from 〈z〉(T0) for any single MS packing
[Fig. 9(b)]. We deliberately do not average 〈z〉/ziso over MS
packings [e.g. in Fig. 1(c)], so that we do not obscure the
plateau behavior of each single MS packing.

Cage-breaking particle rearrangements induce changes in
the packing fraction at jamming onset φJ , i.e., the nearest
MS packings to energy-minimized configurations for �φ <

�φcb(T0), are different than the reference MS packing. The
change in the reference MS packing gives rise to the decrease
in the time-averaged contact number to 〈z〉 ∼ 0 for T � 10−10

above the cage-breaking rearrangement boundary in Fig. 10.
Note that 〈z〉 does not drop to zero for all MS packings, but
it does drop to zero for most MS packings, with an average
minimum value 〈z〉min ≈ 0.24 ± 0.15 for N = 128. In future
studies, we will determine the vibrational response in glassy
systems as a function of the number and types of rearrangement
events that occur.

APPENDIX D: DISCRETE PEAKS IN THE DENSITY
OF VIBRATIONAL FREQUENCIES

In this Appendix, we study the resolution of the 2N − 2
nontrivial, discrete peaks in the density of vibrational fre-
quencies D(ωv) from the Fourier transform of the velocity
autocorrelation function in the ICS (Fig. 2) as a function of the
temporal resolution of the time series for the particle velocities.
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FIG. 11. (Color online) (a) Slope of the time-averaged number of
contacts as a function of T0 for a typical N = 10 packing compressed
to a set of logarithmically spaced �φ above jamming onset. (b) Width
of the slope in (a) scaled by N for typical N = 10 (circles) and 128
(squares) packings compressed to �φ above jamming.

From Eq. (3), the velocity of particle n in a strictly harmonic
system is

vn(t) =
2N∑
k=1

Akω
d
k e

k
n cos

(
ωd

k t + ψk

)
, (D1)

where ωd
k are the eigenfrequencies and ek

n are the eigenvec-
tors of the dynamical matrix. Ak and ψk are determined
by the 4N initial positions and velocities. For our initial
conditions, ψk = 0 and Ak = (2/ωd

k )
∑2N

n=1 vn(0)(ek
n)−1. The

discrete density of vibrational frequencies Dl = D(2πl/�M)
is obtained from the discrete fast-Fourier transform of the
velocity autocorrelation function using M sampled points of
the integrated velocities vnm = vn(m�), where the total sample
time � = 100�t and �t is the integration time step. Then,

Dl = 1

2N

2N∑
n=1

M
2 −1∑

m= M
2

M
2 −1∑

k= M
2

vnmvnke
−2πil(m−k)/M. (D2)

FIG. 12. (Color online) (a) Comparison of the discrete Fourier
transform of the velocity autocorrelation function using M =
1.22×105 (blue circles) with the theoretical prediction [Eq. (D3), blue
solid line] evaluated at the same frequencies for a typical N = 32
packing compressed to �φ = 10−6. (b) Same as panel (a) for two
sampling times, M = 1.22×105 (blue circles) and 2.44×104 (red
squares), but we instead focus on a narrow range of frequencies. The
theoretical predictions for M = 1.22×105 and 2.44×104 are denoted
by solid and dashed lines, respectively.

Using Eq. (D1), this triple sum can be reduced to

Dl = 1

4N

2N∑
n=1

A2
n

(
ωd

n

)2

[
sin

[
M

(
πl
M

± ωd
n�

2

)]
sin

(
πl
M

± ωd
n�

2

)
]2

. (D3)

In Fig. 12, we compare Eq. (D3) with Dl obtained from a N =
32 packing undergoing vibrations in the ICS regime for two
different sampling times, M = 1.22×105 and M = 2.44×104,
corresponding to 190 and 7.6 times the longest eigenperiod.
For both sampling times, we find that Eq. (D3) matches
the simulation data exactly, which indicates that the nonzero
widths of the peaks in D(ωv) in the ICS are due entirely to
finite sampling time and not to intrinsic nonlinearities.
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