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ABSTRACT Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly
intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number
of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital impor-
tance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elon-
gated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this
problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially,
our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells
that are not rod shaped, which we demonstrate by detecting defects on experimental data using the trained model. We show
that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method
as requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental
data interpretation while also reducing costs, advancing the study of nematic defects in biological systems.
WHY IT MATTERS Defects in the local alignment of cells have been found to play a functional role in homeostatic and
morphogenetic processes in many different biological systems. Detecting these defects is, therefore, very important for
improving our understanding of these processes. However, current detection techniques are not well suited to cell layers
in which cells are not elongated in shape. Here, we address this problem by developing a machine learning method
specifically designed to detect defects in these systems. We show that our method outperforms current techniques and
demonstrate that this improved performance means that properties of these defects can be characterized more
accurately with less data. We anticipate this could drastically improve experimental analysis, improving our knowledge
of important biological processes.
INTRODUCTION

Tissue dynamics underpins a wide variety of biological
processes such as wound healing (1), cancer
metastasis (2), and morphogenesis (3). Many of
these processes concern confluent tissues, such as
epithelial and endothelial cell layers, making suitable
descriptions of the dynamics of these systems a pre-
requisite for our understanding of these processes.
Unlike constituents in a passive material, cells within
a confluent tissue can generate forces and exert
stresses on their neighbors and underlying substrate.
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As such, active matter physics provides a natural
framework for describing confluent tissues and has
provided numerous insights into these systems (4).
Active matter is an emergent field of physics con-
cerned with describing many-body systems far from
equilibrium, where the system is driven from equilib-
rium by energy expended by individual constitu-
ents (5).

A fruitful connection between active matter and
biology is the widely accepted use of active nematic
theory to model the interplay between cell shapes
and tissue dynamics (6,7). Nematic systems consist
of elongated constituents that exhibit orientational or-
der with no preferred direction within this orientation,
i.e., they are head-tail symmetric. As such, the orienta-
tion of a cell's long axis is a nematic object, and
the average local direction of cell elongation can be
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thought of as a nematic field. The nematic field is
coupled to the velocity field, with the energy expendi-
ture of individual cells driving a rich variety of out of
equilibrium behavior (8,9). A particularly fertile line of
study within confluent tissues is the formation, dy-
namics, and properties of topological defects in the
nematic field (10,11), as they have been found to
mediate important homeostatic and morphogenetic
processes (7).

Topological defects are singularities in the nematic
field, points where its orientation does not vary
smoothly but is discontinuous. In active nematic sys-
tems, two types of defects are typically found: comet-
shaped singularities, known asþ1=2 defects (Fig. 1 a),
and trefoil-shaped singularities, known as � 1=2 de-
fects (Fig. 1 b). It is these nematic defects that are
being highlighted as having a functional role in an
increasing number of biological processes. Comet-
shaped þ1=2 defects have been found to trigger
cell extrusion in epithelial layers (12) and control the
collective dynamics of confluent layers of neural pro-
genitor cells (13) During Hydra morphogenesis, they
act as organization centers (14,15). These þ 1= 2 de-
fects also mediate processes in densely packed bacte-
rial systems, triggering the formation of fruiting bodies
FIGURE 1 Topological defect identification and classification procedur
defects in a confluent cell layer with the orientation of the long axis of e
uration. We find the x and y coordinates of each cell's center of mass, and
(d) This information is then interpolated to a finer grid to form the nema
parameter S can be calculated at each grid point using a sliding window
defect regions, and the centers of mass of these regions are identified
to form a region of interest (ROI) (blue box). (e) These ROIs are then inp
2 defect, a � 1=2 defect, or not a defect.
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in Myxococcus Xanthus colonies (16), as well as facili-
tating collective motion in Pseudomonas aeruginosa
(17) and E. coli colonies (18). On the other hand,
� 1=2 defects have been associated with controlling
areas of cell depletion in bacterial colonies (16). We
have also recently shown that active nematic defects
can arise in confluent cell layers with no inherently
nematic active forces (19). Due to the prevalence
and functional role of 51=2 in many systems, the effi-
cient detection and characterization of topological de-
fects in confluent tissues is of fundamental interest to
both biology and physics.

Beyond these functional roles, the detection and
measurement of the average properties of nematic de-
fects has been sought in variety of systems such as
epithelial layers (20), nonepithelial cells (21), bilayers
of muscle cells (22), and bacterial systems (23). This
work on nematic defects is also part of a broader inter-
est on the roles tissue layer structure and cell anisot-
ropy play in biological processes (24). Therefore,
methods for detecting nematic defects in biological
systems have broad appeal.

While defect detection algorithms exist, their appli-
cation to imaging data often requires a sophisticated
understanding of the underlying physics. Current
e. Examples of (a) comet-shaped þ1=2 and (b) trefoil-shaped � 1= 2
ach cell plotted in red. (c) Example of an active vertex model config-
the orientation of each cell's long axis is then plotted at these points.
tic field of the system, where the average local scalar nematic order
. Areas of low nematic order (Sth < 0:15) are identified as possible
(blue dots). The nematic field around these points is then cropped
ut into a machine learning model, which classifies them as a þ 1=



algorithms entail locating degenerate points in the
nematic field, followed by inspecting how the orienta-
tion of the nematic field changes around this point
(25), usually by calculating a quantity known as the
winding number at this point. This can be effective in
systems where the nematic field is well defined across
the domain (26,27), including tissues where cells are
elongated or rod-like, such as spindle-shaped fibro-
blasts (28). However, this method is not suited to sys-
tems where the nematic field is not well defined
everywhere, as degenerate points in the field could
just be areas of low order and do not necessarily indi-
cate the existence of a defect. This is often the case in
confluent tissues such as epithelial layers, where the
cells are not rod-like and can be nearly isotropic in
shape at times. Previous work studying defects in
these systems searched for defects by calculating
the winding number on a predefined grid of points
in the nematic field (12,19,29,30). This method
required thousands of defects to be detected to
adequately discern the average properties of defects,
such as tissue stress and velocity fields, which are
often the target of experimental studies. The necessity
of such large amounts of data suggests that the
method of defect detection is inefficient and impre-
cise, which begs the question as to whether better
methods of detection are possible for these systems.

One possibility is to utilize machine learning to
improve defect detection. Machine learning methods
are being exploited in an increasing variety of applica-
tions in active nematic systems (31–33). They have
also been used to detect topological defects in various
systems (34–36), including cellular systems (37). This
previous study identified degenerate points in the
nematic field of a cellular layer and then used a
feedforward, fully connected neural network to
perform a binary classification by labeling the points
as either þ1=2 or � 1=2 defects. However, as previ-
ously discussed, this method is less applicable to
experimental cellular systems where the nematic field
is not well defined everywhere, and points with low
nematic order do not necessarily indicate the exis-
tence of a defect. Additionally, this study did not
demonstrate that its machine learning method outper-
formed existing techniques for detection. As such,
there is still a need to develop a machine learning
method that can outperform current techniques and
be readily utilized in an experimental setting.

Here, we address this problem by developing a
methodology to detect nematic defects in confluent
tissues using a convolutional neural network (CNN),
which is freely available at (38). We design the method
such that it is well suited for use in systems
that currently lack effective detection techniques, is
user friendly, and is readily implementable on experi-
mental data. We demonstrate this by then using our
trained model on experimental images of an epithelial
tissue. In contrast to previous work, we show that it
outperforms current detection techniques and further
demonstrate its efficacy by finding the mean velocity
field around þ1=2 defects and comparing this to de-
fects detected using the winding number method,
highlighting the improvement in capturing properties
of topological defects with limited data.
MATERIALS AND METHODS

Acquisition of test and training data

For our method to be useful, it needs to be suitable for use on exper-
imental data. For this reason, it takes as its input the x and y coordi-
nates of each cell center of mass and the orientation of the long axis
of each cell in radians, both of which can be readily acquired using
standard segmentation software (39). As a large amount of data
are required to adequately train and test the model, we train and
test our model using data from a numerical model of a confluent
cell layer: the active vertex model (AVM) (40–42).

As it is a numerical model, there are aspects of the dynamics and
structure of the simulated tissue that will likely differ from those of
actual monolayers. Indeed, the AVM can only model confluent cell
layers, meaning systems of cells that are not confluent or densely
packed may have a structure inappropriate for use with the trained
model. Additionally, the AVM we implement here models the layer
as two-dimensional, whereas tissues have a finite thickness. Howev-
er, nearly all experimental work on confluent tissue treat the nematic
field as two-dimensional (12,20,24,29,30). Treating cells as polygons
may also limit the irregularity of cell geometries relative to what is
seen experimentally. Nonetheless, AVMs have been used exten-
sively to study epithelial tissue dynamics (43) and have been found
to accurately replicate phenomena observed experimentally (44,45).
Moreover, data from an AVM represent the cell layer in amanner very
similar to how they are represented once experimental images have
been segmented (Fig. 1 c).

We implement the AVM in the same manner as our previous
work (19). Briefly, we represent the tissue as a confluent tiling of
polygons, the degrees of freedom being the cell vertices. In the over-
damped limit, these vertices move according to two types of forces:
passive mechanical interactions between cells, which arise due to
gradients in an effective tissue energy function, and polar self-pro-
pulsive forces that model the motility of each cell. For a complete
description of the AVM implementation, please see (19). Further de-
tails, including parameter values used, can be found in the support-
ing material.
Identifying inputs to machine learning model

To process our input such that it is in a form that a machine learning
model can use to classify 51=2 defects, we first identify regions of
interest (ROIs) within the domain. As defects, by definition, occur
in regions with low nematic order, we identify these areas as ROIs.
To do this, we interpolate our cell orientation data to a fine
grid and average each point over a sliding window to smooth
out the data and create a nematic field (Fig. 1 d). At each grid
point, we then calculate the scalar nematic order parameter S,
which is defined as the largest eigenvalue of the nematic tensor
Q ¼ C2bumbun � dmnD, where bu ¼ ðcos q;sin qÞ, with q being the orien-
tation of the field, dmn the Kronecker delta, and C $D a spatial average
over a sliding window. S takes a value of 1 if the local nematic field is
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perfectly aligned and 0 if the local field is isotropic. As we seek areas
of low order, we identify contiguous areas in our domain where S is
below a threshold value Sth ¼ 0:15. We then take the centers of
mass of these areas to be the centers of our ROIs, cropping the field
in a square around these points (Fig. 1 d). In nematic theory, defects
occur at points where S ¼ 0. As we are dealing with a very noisy
systemwhere the nematic field can be poorly defined, visible defects
do not exactly coincide with points where S ¼ 0, although they do
occur in areas where S is low. We choose the value of Sth such that it
is high enough to capture all disordered regions that may contain de-
fects but low enough that these regions are distinct and do not coa-
lesce, as this would affect the positions of the centers of mass and
hence our ROIs. We size our ROIs such that they contain 5–7 cells,
large enough so as to capture the core of the defect but small
enough to isolate the defects and avoid capturing multiple defects
in a single ROI. We then use our ROIs as inputs into a machine
learning model that classifies them as containing a þ 1= 2 defect,
a � 1=2 defect, or neither (Fig. 1 e). Details of parameter values
used for preprocessing the data can be found in the supporting ma-
terial. As the position of potential defect locations (the centers of
our ROIs) can be located anywhere in the system domain, our
method is effectively off lattice in its detection, although they still
lie on a fine grid. This contrasts with previous work detecting defects
in epithelial cell layers (12,29), which can only detect defects at pre-
defined locations on a coarse-grained lattice.
Model architecture and training

We use a CNN to classify our ROIs. A schematic of the architecture
can be seen in Fig. 1 e. We use two convolutional layers, each detect-
ing 32 features. Due to the size of our ROIs, we do not use any max
pooling layers after these convolutional layers. We then follow these
convolutional layers with an additional fully connected layer of 100
artificial neurons before our output layer of three neurons, represent-
ing our three possible outputs, or classes, of a þ1=2 defect, a �1= 2
defect, or no defect. Having a third output of no defect is key here
and what makes our method particularly well suited to epithelial tis-
sues. As the cells in our tissue do not have a well-defined long axis,
neighboring cells are not always nematically aligned, and there can
be regions with low nematic order that do not necessarily contain
nematic defects. Including an option for our CNN to classify an
ROI as having no defect accounts for this possibility. The output
of our convolutional and fully connected layers are rectified linear
units, while the output layer is softmax (46).

To generate training and testing data, we manually classify 5000
ROIs, using 4500 to train our model and saving 500 for testing.
Manually classifying entails labeling by eye each automatically de-
tected ROI as containing no defect, aþ1=2 defect, or a�1= 2 defect.
To enlarge our training data, we generate three new copies of each
training ROI by rotating each one by angles � p=2, p, and p= 2.
Also, as the type of defect is invariant under reflections, we double
this enlarged training data by reflecting each ROI about its center-
line, leading to 36,000 training inputs. We do not enlarge our testing
data set.

We train our model by minimizing the cross-entropy cost function,
defined as C ¼ � PN

i¼1

P3
c¼1 yi;c log pi;c , where N is the number of

items in each batch of training data, yi;c is the correct label (0 or 1)
for class c of the ith ROI, and pi;c is the probability calculated by the
model that the ith ROI belongs to class c. We minimize C using a sto-
chastic gradient descent algorithm with a batch size of N ¼ 64
ROIs. We train over 30 epochs with a learning rate of 0.025 for the
first 15 epochs and 0.005 for the following 15, initializing our
weights using a Glorot normal distribution (47). 10% of our training
images are held back for validation and used at the end of the epoch
to assess the accuracy of our model. Training for more than 30
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epochs did not lead to any appreciable improvements in validation
accuracy, highlighting that overfitting is starting to occur. A com-
plete list of parameter values used can be found in the supporting
material.
Winding number calculation and comparison

Manually labeling the ROIs allows a direct comparison between our
method and the current standard technique used in defect detection,
calculation of the winding number, to be drawn, as we can also clas-
sify each ROI by calculating its winding number. We can then find
the accuracy of both methods when compared against our manually
labeled ROIs, our “ground truth.” Previous work on applying machine
learning to detect nematic defects in tissues has used the winding
number as the ground truth (37), thereby making it impossible to
determine if themachine learningmethod is superior to current tech-
niques. The winding number is the amount the nematic field rotates
as a closed loop is traversed around the center of the defect (48). As
we are traversing a closed loop, we must return to our original orien-
tation at the end of the loop, so the number of radians rotated is al-
ways a multiple of p. The 51=2 defects found in nematic systems
are so called because the nematic field rotates by half a full rotation,
or p radians, around the loop (see Figure S5). The sign of the defects
depends on whether the rotation of the nematic field is in the same
direction as the direction in which the loop is being traversed. If the
nematic field rotates clockwise as the loop is traversed in a clock-
wise direction, the defect is positive; if it rotates anticlockwise, it
is negative. We classify each ROI by finding the winding number
on the fine grid around the edge of the ROI.
RESULTS

Machine learning model outperforms winding
number classification

The mean performance of our CNN model with each
training epoch can be seen in Fig. 2 a. We note that
our model's performance on the validation data is
slightly better than the training data, which is most
likely due to the 50% dropout we employ on the fully
connected layer when training. After training, our
model clearly outperforms the winding number for
overall classification accuracy on the training data
set, defined as the percentage of correct predictions.
However, these are ROIs that our model is being
trained on, meaning it has “seen” them before in previ-
ous training epochs. The real utility of our method de-
pends on its ability to classify ROIs it has not seen
before, which we test using the 500 ROIs in our test
data set. Here, our model is again more accurate
than the winding number, achieving an accuracy of
84.0% compared to the winding number's 76.6%,
demonstrating that our method outperforms the cur-
rent most widely used technique. To assess generaliz-
ability of the model, we study how well our model, with
weights trained on the original dataset, performs in
different AVM parameter regimes. We collect data us-
ing three further parameters sets, chosen to simulate
a tissue in both solid-like and fluid-like states, and



FIGURE 2 Machine learning model outperforms winding number classifier. (a) The training and validation loss and accuracy of the neural
network as it is trained. Mean value of 50 realizations is plotted. The black dashed line represents the accuracy of the winding number clas-
sification on the training data (0.812). (b) An example domain with defects detected using each method: our ground truth, neural network, and
winding number.
manually classify 500 ROIs for each set. We find that
our model outperforms the winding number, and main-
tains a high classification accuracy, for every param-
eter set used, highlighting the efficacy of our method
for confluent tissues with a range of structures and dy-
namics. Details of the parameters and performance
can be found in Table S1.

Defect detection techniques can often be sensitive
to the window size used to detect them. If our trained
model is to be readily usable on experimental data, it
should achieve accurate results over a range of win-
dow sizes. To investigate this, we assess the accuracy
of our trained model and the winding number method
in classifying the test data at different grid sizes (see
supporting material). As our model takes as input a 9�
9 grid of points, changing the grid size is akin to
changing the ROI size. We find that, over a range of
grid sizes, our method outperforms the winding num-
ber method, demonstrating its robustness in classi-
fying defects even when the ROI size is not well
tuned to the size of defects in the system (see Figure
S2). As an example of the defects detected using each
method, we look at an example domain from our AVM
containing ROIs from our test data set (Fig. 2 b). In line
with Fig. 2 a, both techniques show good agreement
with manually labeled defects, although the winding
number appears to detect more false positives
than the neural network. To assess this further and
properly delineate the efficacy of both methods, we
break down their performance for each class in
Table 1. We calculate the precision P, sensitivity S,
and F1 score of each method using
P ¼ true positive
true positive þ false positive

;

S ¼ true positive
true positive þ false negative

; and F1

¼ 2PS
P þ S

: (1)

The precision determines what proportion of detec-
tions are correct; it quantifies how detrimental
false positives are to performance. Sensitivity, on the
other hand, examines the role of false negatives in per-
formance and establishes what proportion of true de-
fects is actually identified. The F1 score is a weighted
average of the precision and sensitivity and so is a
broader metric of performance.

Both methods display a similar pattern of having a
higher sensitivity than precision for both defect cate-
gories but a higher precision than sensitivity when
no defect is present. Additionally, both methods
exhibit a lower F1 score when no defect is present, a
reflection of the larger differential between precision
and sensitivity scores. Errors in both methods, there-
fore, primarily come from falsely detecting defects
as opposed to missing defects that should be de-
tected. This information is lost when looking just
at the weighted average values across all classes,
which give more comparable precision and sensitivity
scores. Sensitivity scores of close to one in defect
regions, and precision scores of close to one in nonde-
fect regions, indicate that both methods could be
improved by formulating a means of reducing the
Biophysical Reports 4, 100142, March 13, 2024 5



TABLE 1 Performance of defect detection methods on test data

þ1=2 No defect � 1=2 Total

P S F1 P S F1 P S F1 P S F1
Neural network 0.786 0.967 0.867 0.932 0.663 0.775 0.818 0.964 0.885 0.856 0.840 0.834
Winding number 0.729 0.974 0.834 0.960 0.457 0.619 0.707 1.000 0.828 0.819 0.766 0.743

Precision (P), sensitivity (S), and F1 score for each class, as well as an average over all classes, weighted by the size of that class.
sensitivity to defect in order to increase precision, and
vice versa for nondefect regions, if a more precise
detection method was a priority. This improved perfor-
mance is likely driven by to the winding number only
using information around the edge of the ROI. This
improved performance is likely driven by to the wind-
ing number only using information around the edge
of the ROIs: we only track the rotation angle between
directors at the edge of the ROI when calculating the
winding number, while our method utilizes information
from across the whole region. To highlight this, we in-
spected ROIs misclassified by the winding number but
correctly classified by our method. As both methods
show very few type II errors (false-negatives) in defect
regions, it is most informative to study type I errors
(false-positives) in these regions, as this is where the
biggest disparities in performance are found. The
reverse is true in nondefect regions. However, a type
I error in a defect region is nearly always of type II in
a nondefect region, as both methods are much
more likely to confuse defects of a given charge with
nondefect regions as opposed to oppositely charged
defects. We thus focus on type I errors in defect re-
gions. Upon inspection, we find that the two methods
tend to differ in classification when the winding num-
ber detects a half rotation around the perimeter of
the ROI but the director field on the interior does
not display the typical curvature of a defect with
that winding number (convex for þ1=2 and concave
for � 1=2), suggesting that our method is indeed us-
ing this information when operating (Figure S3). How-
ever, the two methods differ in our CNN model having
consistently higher F1 for each category. This is driven
by its higher precision in each defect class and higher
sensitivity when no defect is present. The winding
number, however, is slightly more sensitive to detect-
ing defects when they are present. Taken together,
these results show that the improved performance
of our neural network compared to the winding num-
ber primarily stems from it detecting fewer false posi-
tive defects. We point out here that it could be argued
that precision and sensitivity should not be weighted
equally, as they are in the F1 score, and that there
may be scenarios where ensuring detecting as many
defects as possible is more important than minimizing
detecting defects that are not there. However, we now
show that while the winding number may detect a
6 Biophysical Reports 4, 100142, March 13, 2024
slightly higher proportion of defects, the higher overall
performance of our model can manifest itself in a
wider improvement to experimental results.
Superior performance leads to improved capturing of
defect properties

While results thus far point to the effectiveness of our
model, to show that this realizes itself in tangible
improvements to wider results, we look at the ability
of our model, and the winding number, to ascertain
the properties of defects. Experimental studies often
seek not only to detect defects but to examine tissue
properties around them in cell layers (12,13,20,21,29)
as well as bacterial systems (16–18,23). To this end,
we calculate the average velocity field aroundþ1=2 de-
fects detected using each method. The velocity field is
particularly pertinent, as one can infer global system
properties from the velocity ofþ1=2 defects. The veloc-
ity direction indicates whether the system is behaving
as an extensile (the net force on cells is pushing out
along its long axis) or contractile (pulling in along its
long axis) nematic, with tail-to-head motion indicating
extensile forces and head-to-tail motion indicating con-
tractile forces (11). Epithelial layers have been shown
to exhibit both forward and backward motion in exper-
iments (29). It is therefore valuable to be able to
distinguish defect motion accurately and efficiently.

Previous work using this AVM has determined that
þ1=2 defects move in a tail-to-head direction, indi-
cating extensile behavior, in this system (19). Howev-
er, obtaining the characteristic extensile flow field
required averaging the velocity field over many simula-
tions and several thousand defects. While this was
achievable in a numerical model, time and cost con-
straints could make the requirements of such vast
amounts of data to understand the properties of these
defects prohibitive in an experimental setting. Due to
the difficulty in collecting experimental data, it is there-
fore crucial that defect properties can be discerned us-
ing a minimal amount of information.

The average velocity fields for manually labeled,
winding-number-detected, and neural-network-detected
defects, using 150þ1=2 defects detected from the test
data set, can be seen in Fig. 3. Details of our method for
obtaining these average fields can be found in the sup-
porting material. 150 defects were used, as this was



FIGURE 3 Less data are needed to characterize defect properties. Average velocity fields around þ1=2 defects for (a) manually labeled de-
fects, (b) defects detected using the neural network, and (c) defects detected using the winding number. The single-point correlation function
(CvGT $v,D) between the ground-truth field and the neural network and winding number fields is also shown.
number of þ1=2 defects manually labeled in the test
data set and so the largest number we could use to
compare the different methods. The manually labeled
defects demonstrate the clearest tail-to-head, vortical
flow fields characteristic of extensile systems (11).
The flow field around CNN-detected defects clearly
show better agreement with the manually labeled
flow field than the flow field found using the winding
number, reflected in the higher correlation between
the two fields. To understand how the quality of
average field varies as a function of number of defects
in the ensemble being averaged over, we also look at
how the correlation with the manually labeled field
plotted in Fig. 3 a changes with ensemble size (see
the supporting material for a detailed description),
which can be seen in Figure S4 b. With the exception
of one ensemble size, our method consistently
outperforms the winding number correlation, further
highlighting the efficacy of our method. The improve-
ment between the two methods is even more stark
when looking at the difference in velocity magnitudes
between each method and the manually labeled flow
field (see Figure S6). This illustrates the impact of the
reduced performance, particularly the reduced preci-
sion, of the winding number and confirms the primacy
of our model in detecting “better” defects, as the antic-
ipated mean-field behavior is clearer. Additionally, we
compared the velocity field around defects detected us-
ing our model and defects detected on the same
data using the “on-lattice” winding number method
used previously (19) (see Figure S7). The difference
between the two is even starker than between our
model and the off-lattice winding number method
used in the present study. As well as highlighting
the improvement using an off-lattice method can
bring, it further underlines the benefits of our model
compared to techniques used currently. While it is
defect properties that are often the target of experi-
mental studies, it is also illuminating to determine the
average nematic field around defects themselves. As
such, we have calculated the average nematic field
around 150 þ1=2 and 150 � 1=2 test defects for
each classification method (Figure S8). Both the
neural network and winding number methods show
strong correlation with the manually labeled defects,
although the neural network is noticeably slightly stron-
ger for� 1=2 defects. We again calculate the cross cor-
relation between each detection method and manually
classified defects as a function of the ensemble size
(Figure S4) and see our method again consistently out-
performs the winding number method, albeit by a
smaller margin than with the average velocity fields.
This underlines both the efficacy of our method but
also the noise present in the velocity field, as the corre-
lation with the ground truth is stronger than when
examining the velocity field around þ1=2 defects.
Machine learning model generalizes to experimental
data

The real utility of our model will rest in its ability to
detect defects in experimental data, which we now
demonstrate. We detect defects in monolayers of
wild-type Madin Darby canine kidney cells, as nematic
defects have been studied in this tissue previously
(12,29). The cell centers of mass and long axis orienta-
tion are extracted and input into our model, with the
detected defects shown in Fig. 4. The model success-
fully identifies both defect types across the domain,
highlighting the generalizability of our model to exper-
imental data. While, from this example, we are not able
to determine the “quality” of the defects detected, it
serves as a useful demonstration that our model is
readily implementable on experimental data.
DISCUSSION

In this study, we have developed a new method for de-
tecting nematic defects in confluent tissues, which,
crucially, is readily implementable on experimental
Biophysical Reports 4, 100142, March 13, 2024 7



FIGURE 4 Machine learning model detects defects on experi-
mental data. A representative example of nematic defects detected
on a wild-type MDCK cell monolayer, with þ1=2 defects in blue
and �1=2 in green. As well as the bright-field image of the cell layer,
we also plot the long axis of each cell in red and the center of mass
as a light blue circle.
data. Our model can therefore aid in the expanding
study of characterizing cellular layers as active nematic
systems, as active nematic defects are increasingly
found to play functional roles in these systems (6).
Importantly, we demonstrate that our method displays
superior performance to the current standard use
of the winding number in detecting defects and in
capturing the mean-field properties of these defects.
This reduces the amount of data required to obtain
these properties, potentially improving experimental
data interpretation. Interestingly, although the overall
performance of our model is better, the winding number
is slightly more sensitive to detecting defects. This
means there could be applications where using the
winding number would be more suitable, if the cost of
missing a defect in the domain is very high. However,
the improved performance in finding mean defect
flow fields demonstrates that, in practice, the increase
in overall performance of our model makes it more ad-
vantageous. This improved performance is likely due to
the winding number only using information around the
edge of the ROI, as we only track the rotation angle be-
tween directors at the edge of the ROI when calculating
the winding number. Our CNN, on the other hand,
can take advantage of spatial information and correla-
tions across the whole region. In contrast to previous
studies on using machine learning to detect nematic
defects (37), our method is specifically designed for
noisy experimental systems where the nematic field
may not be well defined everywhere and, consequently,
low nematic order may not guarantee the presence of a
defect. However, we anticipate our method will work
well with any system whose nematic field can be
8 Biophysical Reports 4, 100142, March 13, 2024
easily interpolated to a 2D grid. This is particularly
pertinent due to the wide variety of biological
systems in which nematic defects are being detected
(13,14,16,20,22). Indeed, applying our method to active
nematic systems, such as microtubule systems (49),
would be an interesting future application of our tech-
nique. Another interesting future avenue of research
includes extending the model to detect integer þ1 de-
fects, such as spiral- or aster-shaped singularities, as
these have been engineered to arise in cellular sys-
tems (50,51) and have also been linked to morphoge-
netic processes (14,52).

The trained CNN model along with training data and
Python scripts to detect defects can be found at
https://github.com/KilleenA/ML_DefectDetection.
SUPPORTING MATERIAL

Supplemental information can be found online at https://doi.org/10.
1016/j.bpr.2024.100142.
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