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Modeling growing confluent tissues using a lattice Boltzmann method:
Interface stability and fluctuations
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Tissue growth underpins a wide array of biological and developmental processes, and numerical modeling of
growing systems has been shown to be a useful tool for understanding these processes. However, the phenomena
that can be captured are often limited by the size of systems that can be modeled. Here, we address this limitation
by introducing a lattice Boltzmann method (LBM) for a growing system that is able to efficiently model
hydrodynamic length scales. The model incorporates a bounce-back approach to describing the growing front of
a tissue, which we use to investigate the dynamics of the interface of growing model tissues. We find that the
interface grows with scaling in agreement with the Kardar-Parisi-Zhang (KPZ) universality class when growth
in the system is bulk driven. Interestingly, we also find the emergence of a previously unreported hydrodynamic
instability when proliferation is restricted to the tissue edge. We then develop an analytical theory to show that
the instability arises due to a coupling between the number of cells actively proliferating and the position of the
interface.
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I. INTRODUCTION

Many biological processes, from cancer metastasis to mor-
phogenesis, rely on the integration of cell proliferation and
collective cell movement. While cell proliferation is known
to be regulated by the mechanical properties of the tissue [1],
it is also becoming increasingly clear that proliferation alters
the properties, and consequently the dynamics, of the tissue
in return [2–4]. Whereas the forces generated during cell divi-
sion events are well understood [5], our understanding of how
these affect dynamics at the collective level is comparatively
more limited [6]. This is due to the difficulty in determining
how cellular scale processes, such as cell division, manifest
themselves as macroscopic dynamics [7].

Numerical models offer a fruitful avenue for exploring
growing and collectively migrating biological systems [8].
Cell-based simulations have shown how cell division affects
the structure of, and fluidizes, epithelial tissues [9–12]. They
have also delineated the effect of cell division on different
macroscopic dynamics, such as on coherent angular motion
in morphogenesis [13] and how the interplay of mechanical
stresses and cell proliferation can drive fronts of growing cells
[14]. However, due to the increase in computational com-
plexity as the number of cells increase, cell-based models are
limited in the length scale of system they can model, leading
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to a need for methods that can describe these growing systems
in the hydrodynamic limit.

Continuum models have been employed to study grow-
ing bacterial colonies in two [15,16] and three dimensions
[17], while multiple studies have described growing biolog-
ical systems in 2D using a hybrid lattice Boltzmann method
(LBM) [2,18,19]. Well established as an efficient means of
simulating passive fluids, more recently active nematic [20]
and polar [21] systems have been described using LBMs.
Previous LBM studies of active systems have either used
periodic domains in which the entire system is active, or have
described the boundary of the active material using a phase
separating system with a phase field [2]. These approaches
are valid if the phenomena under study relate to behavior
in the bulk or if the system is not completely phase sepa-
rated, i.e., the “vapor” phase has a nonvanishing, albeit low,
density. However, they are not appropriate in systems with
well-defined boundaries and areas completely devoid of cells,
such as expanding tissue layers or densely packed bacterial
biofilms.

In such systems, properly capturing the interface is critical
to an accurate description of important physiological pro-
cesses. As such, in recent years, numerous studies have sought
to characterize the dynamics of the interface. This has been
done by examining the stability of growing tissue fronts under
different conditions [22–25] or by ascertaining the scaling
behavior of the interface roughness to determine the univer-
sality class to which the growth process belongs [26–31].
Importantly, these studies led to conflicting results, leaving
the question of the dynamics of growing tissue fronts and their
stability unsettled. The observed disagreements are likely due
to the difficulty in simulating large enough systems; to address
this outstanding issue, we here develop a methodology able to
overcome these computational challenges.
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FIG. 1. A LBM for a growing biological system. (a) We discretize our system (left) onto a hexagonal lattice (middle), with each lattice
point representing a number of cells. There is a growing front beyond which the distribution function fi is zero in all lattice directions, (white
sites in right). (b) Each time step is subdivided into a streaming step and redistribution step. In the streaming step, fi is advanced by one time
step to get an intermediate distribution f ∗

i . A steady-state distribution f ss
i is then calculated using f ∗

i and fi is redistributed such that it relaxes
towards f ss

i . (c) The growing periphery is enforced using a “bounce-back” condition during the redistribution step. When the density at a site is
below a critical density ρc, instead of relaxing fi towards the steady-state distribution f ss

i , the directions of the distribution function are reversed
such that the mass that would next stream to an empty site (dashed arrow in top schematic) is now bounced back in the opposite direction
(dashed arrow in bottom schematic). The mass just streamed from an empty site (dotted arrow in top schematic), which would be zero, is then
set to stream back out instead (dotted arrow in bottom schematic).

Specifically, we introduce an LBM for growing biologi-
cal tissues capable of describing faithfully the dynamics of
growing fronts. Crucially, our method for modeling the in-
terface of our tissue ensures there is no low-density vapor
phase and our tissue has a sharp edge. Using this method, we
study the dynamics and stability of a growth front. Specif-
ically we find that the interface of a tissue growing due to
bulk driven cell proliferation exhibits scaling consistent with
the Kardar-Parisi-Zhang (KPZ) universality class. We then
consider tissue growth with a density-dependent proliferation
regime where proliferation occurs around the growing front,
where we again find growth consistent with KPZ scaling
in the interface width for small system sizes. However, we
also find a previously unreported mechanical instability at
larger system sizes, which we explain using a linear sta-
bility analysis. These findings demonstrate the efficacy of
using this LBM, as its mesoscopic scale made it possible
to simulate large enough systems to observe this instabil-
ity and allow us to observe behavior consistent with KPZ
scaling.

The paper is organized as follows. In Sec. II, we introduce
our LBM for a growing system with a fluctuating interface.
In Sec. III, we characterize the scaling behavior of the in-
terface using a bulk driven growth regime. In Sec. IV, we
then study interface fluctuations using a density-dependent
growth regime, before examining the emergent instability and
how it forms. We then discuss our model and conclusions in
Sec. V.

II. LATTICE BOLTZMANN METHOD

The key development of our LBM is the inclusion of cell
proliferation and a growing interface that properly captures
the behavior of tissue interfaces by having a sharp boundary,
beyond which is completely devoid of any mass. However, for
context, we first give an overview of the LBM.

As the starting point for our present model we take a
LBM recently developed for dry active fluids; crucially, it
was shown via a Chapman-Enskog expansion that this lat-
tice Boltzmann approach solves the Toner-Tu equations in
the hydrodynamic limit [21]. The underlying principle of the
LBM is that, instead of solving the hydrodynamic equations of
motion (EOM), one solves a simplified system that obeys the
same hydrodynamic symmetries as the real system, leading
to identical behavior in the hydrodynamic limit [32,33]. This
is done by calculating the dynamics of a discretized distri-
bution function fi(t, r), which represents the distribution of
mass at time t and position r, where i corresponds to direc-
tions on the lattice on which our system is discretized. We
use a two-dimensional triangular lattice [Fig. 1(a)], termed
D2Q7 in standard LBM notation, meaning mass moves along
lattice vectors ei = cos [(i − 1)π/6]x̂ + sin [(i − 1)π/6]ŷ for
i ∈ {1, 2, . . . 6} and e0 = 0, corresponding to mass, which is
at rest. We use this lattice as it replicates the natural structure
of confluent cell layers, where cells usually have six neighbors
on average. The lattice speed c is the ratio of our grid spacing
�x to time step �t , which we choose to be 1. The hydrody-
namic variables of interest, cell density ρ and velocity u can
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then be calculated from fi using

ρ(t, r) =
6∑

i=0

fi(t, r), u(t, r) =
∑6

i=0 fi(t, r) cei

ρ(t, r)
. (1)

We then evolve fi according to fi(t + �t, r + cei�t ) =
fi(t, r) + �i, where �i is a collision operator that ensures
matter in our system interacts whiles obeying the same sym-
metries as the system we wish to model. While there are
many choices for �i, we use the Bhatnagar-Gross-Krook col-
lision operator [34] with additional fluctuations ηi, meaning fi

evolves according to

fi(t + �t, r + ei ) = fi(t, r) − 1

τ

[
fi(t, r) − f SS

i (t, r)
]

+ ηi(t, r), (2)

where we use r + ei for brevity, as r + ei = r + �xei = r +
cei�t . Our relaxation parameter is τ , ηi are random fluctu-
ations and f SS

i is a steady-state distribution, which respects
the same symmetries as our system, meaning our system
obeys the correct symmetries as it relaxes towards f SS

i . While
“steady state” implies a quantity that does not change, f SS

i
refers to the distribution function the system would have were
it in steady state given the current density and velocity fields,
and so it changes as these quantities change. We define f SS

i as

f SS
i = wiρ

(
1 + 4

ei · u∗

c
+ 8

(ei · u∗)2

c2
− 2

|u∗|2
c2

)
, (3)

where wi are lattice direction weights, with w0 = 1/2 and
wi �=0 = 1/12, and u∗ is our steady-state velocity that depends
on the system we are modeling. We define f SS

i in this way
because, if u∗ = u, Eq. (3) would be the equilibrium distri-
bution used to model passive fluids in 2D with a triangular
lattice, as it conserves mass and momentum [33]. However, as
active systems do not require the conservation of momentum,
we can choose u∗ to be any function of u and ρ that respects
the symmetries of the system of interest. As our focus here is
to study the effects of proliferation and not motility, here we
choose u∗ = (1 − μ)u, where μ encodes dissipation arising
from friction with the substrate, although different forms of
u∗ can be used to model active self-propulsion [21]. We note
setting μ = 0 does not alter any of the results we present here.
We also note that while the form of the steady-state velocity
used here is different from that of Ref. [21], we nevertheless
expect the continuum equations we are solving to be the
Toner-Tu equations.

As we have defined it, Eq. (2) always conserves mass
regardless of our choice of u∗, which is obviously not the case
in a growing system. However, choosing f SS

i so as to conserve
mass allows easier control over precisely how mass is added
to our system and so how cell proliferation is modeled.

The fluctuations ηi in Eq. (2) are defined as

ηi(t, r) = η̃i(t, r) − 1

7

6∑
i=0

η̃i(t, r), (4)

where η̃i is an uncorrelated random variable that is uniformly
distributed between [−σ, σ ]. This form of noise is chosen so
as to conserve mass, for reasons discussed previously.

We evolve Eq. (2) in two steps: a streaming step and
a redistribution step [Fig. 1(b)]. In the streaming step fi is
evolved by one time step to give an intermediate distribu-
tion f ∗

i (t + �t, r + ei ) = fi. In the redistribution step, f SS
i is

then calculated at each point by calculating the hydrodynamic
variables based on f ∗

i . We then relax f ∗
i towards f SS

i using
Eq. (2) by replacing fi(t, r) with f ∗

i (t + �t, r + ei ) on the
right-hand side. Fluctuations ηi are then added to give the final
distribution at the next time step fi(t + �t, r + ei ).

Based on this model, we can now incorporate both cell pro-
liferation and a growing tissue boundary, as described below.

A. Adding cell proliferation

To model cell proliferation, in between the streaming and
redistribution steps, we add mass at a chosen a site by increas-
ing fi of two opposite lattice vectors, for example f1 and f4,
by ρcell/2. Here ρcell corresponds to the mass of one cell. The
direction in which mass is injected is chosen at random and
replicates the extensile nematic nature of cell division [2].
We determine the number of sites at which we inject mass
by setting growth to be at a constant rate g. The number of
sites to be randomly selected is then ns = gmtot/ρcell, where
mtot is the total cell mass, found by summing ρ over all lattice
points. Proliferation sites are then selected, with replacement,
at random until enough mass has been added to the system.
Time- or position-dependent proliferation rates can then be
implemented depending on the probability distribution from
which proliferation sites are selected. Implementing prolif-
eration in this manner captures the inherent stochasticity of
the process as well as the fact that cell division events induce
long-range disturbances in the dynamics of confluent tissues
[5].

Here, we look at two growth regimes. Initially, we select
proliferation sites from a uniform distribution, meaning pro-
liferation in the active portion of our tissue is equally likely in
any occupied site in the bulk or at the interface, meaning the
majority occurs in the bulk. We use the phrase “active portion”
because, as the tissue grows and the interface advances, we ad-
vance the rear wall of the model with it. This greatly improves
efficiency and reflects the fact that biological tissues typically
have a section towards the front that is actively proliferat-
ing, with cells far from the boundary becoming quiescent.
Secondly, we implement a more biologically relevant growth
regime where the local proliferation rate is dependent on the
local density in the system, which concentrates proliferation
to the interfacial region. This is motivated by increased cell
density causing increases in tissue pressure away from the
tissue boundary [35], which can inhibit cell proliferation [36].
Now, when a lattice site is randomly selected, cell division
occurs with probability pdiv(r), which decays linearly with the
local density according to

pdiv(r) =
{

1 − ρ(r)/ρ0, if ρ(r) > ρc

0 otherwise
(5)

where ρ0 the critical density above which proliferation ceases.
This regime models a scenario where crowding suppresses
proliferation due to increased compressive stresses, such as in
epithelial layers [37], meaning the bulk of the tissue becomes
quiescent.

043096-3



KILLEEN, PARTRIDGE, BERTRAND, AND LEE PHYSICAL REVIEW RESEARCH 5, 043096 (2023)

B. Moving growth front: A two-step bounce-back method

While growth in the form of mass injection can be readily
implemented within the LBM framework, a key difficulty
in applying it to a growing system is how the interfacial
dynamics should be captured. Here, our key innovation is
to use a two step thresholding method to accomplish this
task. Specifically, our method ensures that the vapor phase is
completely devoid of any mass, which also distinguishes our
method from existing LBMs applied to phase separating sys-
tems. In these existing LBMs, phase separation is controlled
by equilibrium processes such as spinodal decomposition [2],
which are clearly distinct to the far from equilibrium processes
that drive the separation of cells and the medium in confluent
tissues.

We achieve this by developing a type of freely moving
bounce-back method. In the redistribution step, if the density
at a given site is below a threshold value ρc, instead of relax-
ing towards f SS

i , the directions of f ∗
i are reversed such that

f ∗
i = f ∗

j where e j is the reverse direction of ei (1 ↔ 4, 2 ↔
5, 3 ↔ 6). This means the mass just streamed to a given node
in the stream step is reflected such that it now travels back in
the direction it came from [Fig. 1(c)]. This ensures that any
mass that would be streamed “out” of the system in the next
time step is rebounded back in and the lattice site it would
be streamed to remains empty. This ensures that at the edge
of the tissue there is one lattice site with ρ < ρc and beyond
this the system is devoid of mass. This mimics a surface
tension like force and allows our LBM to easily model sharp
interfaces such as an epithelial tissue edge. The boundary
then expands as proliferation causes a build-up of density,
and therefore pressure, in the tissue. This leads to an outwards
force and flow of mass at the boundary, which advances once
the critical density at the boundary nodes has been reached.

III. BULK DRIVEN GROWTH

To demonstrate the efficacy of our model, and the utility
of our method for capturing the dynamics of the interface, we
use our model to study the dynamics of the tissue boundary,

or interface, initially in a regime where proliferation is taken
to happen uniformly across the active portion of the tissue,
meaning the majority of it occurs in the bulk. Growing inter-
faces are characterized by calculating how the roughness of
the interface—or interface width—scales with space and time.
Calculating the scaling behavior of the interface width allows
one to determine critical exponents and hence the universality
class to which the system belongs [38,39]. As we are dealing
with a nonequilibrium, growing system, we would generically
expect that it belongs to the KPZ universality class [38].

Interface growth in biological systems has been studied ex-
perimentally [28,40–42] and numerically [26,27,43,44] and,
although KPZ scaling has been observed [26,28,43,44], there
is some debate as to what the proper scaling is. Scaling in
agreement with the molecular beam epitaxy universality class
has also been reported [40,41], along with scaling inconsistent
with either class [42,45]. This debate often stems from the
difficulty in simulating large enough systems or subtleties in
the models used, such as heterogeneity in the surrounding
environment [27]. It can also arise from the difficulty of using
experimental data to perform the scaling analysis [46]. Using
a model as generic as our LBM allows for insight into how
cell proliferation manifests itself in interface growth without
these subtleties.

To examine how the interface evolves, we calculate the
interface width w, defined as the standard deviation of the
interface height h(y, t ),

w(t ) =
√

1

L

∫ L

0

[
h(y, t ) − h̄(t )

]2
dy, (6)

where L is the width of the domain. How the interface scales
in time and space can be completely described by two scaling
exponents α and β. The growth exponent β describes how
w grows before it reaches its steady state, saturation value
w∞ at time t∞, that is w ∼ tβ (t � t∞). The roughness ex-
ponent α describes how w∞ scales with the system size L,
wsat ∼ Lα (t 	 t∞). The time for the system to reach steady
state then scales according to the dynamic exponent z = α/β,

FIG. 2. KPZ scaling. (a) Time evolution of the interface width w for systems of different length L. (b) Curves collapse when rescaled
by KPZ exponents. The dashed line showing scaling t1/3 highlights the corresponding KPZ growth exponent. KPZ scaling of (c) w∞ and
(d) t∞ with L. The dashed line is a guide showing KPZ scaling for (c) the roughness exponent α, w∞ ∼ L1/2 and (d) the dynamic exponent z,
t∞ ∼ L3/2.
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FIG. 3. A system spanning instability causes divergence from KPZ scaling. (a) Interface growth curves for systems with L < 320 collapse
when rescaled by KPZ exponents, but diverge for L > 320. (b) Examples of steady-state profiles of the interface position h shifted by the
average interface position h̄ for systems with L = 320 (light blue), L = 640 (dark blue), and L = 1280 (black). (c) Probability distributions
for the difference between the number of cell divisions �ρcell around hmax and hmin for L = 40 (light blue) and L = 640 (dark blue). (Inset)
Schematic of the proposed instability mechanism, proliferative regions are shown in dark blue. The more advanced sections of the interface
are more proliferative.

meaning t∞ ∼ Lz. For KPZ scaling one would expect α = 1/2
and β = 1/3, leading to z = 3/2.

To investigate this, we implement our LBM, with uniform
proliferation throughout the nonquiescent region. We imple-
ment it on rectangular domains of different widths L, with
periodic boundary conditions at the top and bottom bound-
aries, and a bounce-back condition at the rear wall. A full
description of the implementation, along with a complete list
of parameter values used, can be found in Appendix A.

Figure 2(a) shows the time evolution of w for different sys-
tem sizes, showing, as anticipated, that each systems interface
grows at the same rate but that larger systems permit rougher
interfaces. Upon rescaling w and t by the appropriate KPZ
exponents, L1/2 and L3/2 respectively, we find a very good
curve collapse, indicating the system is exhibiting scaling
consistent with the KPZ universality class [Fig. 2(b)]. This is
underlined in Figs. 2(c) and 2(d), which show the appropriate
scaling of w∞ and t∞ with L.

IV. DENSITY-DEPENDENT GROWTH

A. Interface growth

We now implement a more realistic scenario, where prolif-
eration is concentrated towards the boundary of the system.
We do this by implementing a density-dependent growth
regime following Eq. (5), keeping other parameters the same.
Upon studying the growth of the interface in this regime, we
again see KPZ scaling for systems with L < 640; however,
for larger system sizes KPZ scaling is not observed and the
interface width appears to diverge [Fig. 3(a)].

To investigate the cause of this divergence, we plot the
steady-state profile of the boundary for systems of different
sizes [Fig. 3(b)]. Surprisingly, upon doing this we see that,
for sufficiently large L, the interface is subject to a system-
spanning instability, at the largest wavelength permitted by
the system. To gain an insight into the cause of the instability,
we studied proliferation in the tissue in the area around the
most advanced (hmax) and least advanced (hmin) positions of
the interface. We define these areas as rectangular regions
extending 10 lattice sites above and below hmax or hmin, and

20 lattice sites into the bulk. We find that, for larger system
sizes, there were more proliferation events around hmax than
hmin, although this pronounced bias was not seen for smaller
system sizes [Fig. 3(c)]. This led us to hypothesize that a local
increase in the proliferation rate around protrusions to the in-
terface could lead to an increase in the local interface velocity,
thus driving the instability [Fig. 3(c) inset]. To understand the
mechanism driving the instability further we now develop a
minimal model of interface growth in our system.

B. Linear stability analysis

The stability of interfaces is one aspect of collective motion
in active systems that has attracted considerable interest in
recent years, and a range of instability mechanisms have been
found in different analytical models, principally in spreading
tissues. Active traction forces have been found to destabi-
lize a spreading tissue front in the absence of proliferation
[22,23]. Coupling these motility forces to the tissue velocity
field through alignment has also been shown to induce an
instability in a stationary front [24,25]. Introducing special
leader cells with higher motility at the tissue front can also
lead to fingering [47,48], as can including a mechanochemical
coupling [49]. Previous study has also delineated how insta-
bilities in active nematic droplets can arise due to interplay
between active forces and anchoring at the droplet edge [50].
Fingering instabilities have also been studied numerically,
with particle-based studies reporting that motility forces can
induce fingering in a tissue in the absence of proliferation
[51], in a similar manner to analytical models. However, our
LBM implementation contains no motility forces, making the
instability we observe distinct from these previous studies.
While cell proliferation was also found to induce an instability
between a viscous fluid tissue and another medium [52–55],
an instability arising from a purely proliferative system ex-
panding into a void has rarely been reported in the literature.

To understand the mechanism at play, we write down an
equation of motion for the interface position h. Our numerical
results suggest that for the instability to occur we require the
growth rate of the interface to increase as we move from hmin

to hmax. This can be understood by considering what happens
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FIG. 4. Growth rate of perturbations of different wave numbers.
Perturbations only become unstable at wave numbers q <

√
k/γ ,

corresponding to lengths L >
√

γ /k. Beyond this threshold, the
fastest growing mode is always the longest wavelength permitted by
the system.

when the boundary locally advances. Any local increase in h
will necessarily have a lower density than the area preceding
it and so a higher likelihood of cell division. Due to friction,
and the limits on how quickly information can propagate in
the system, the effect of these changes in density can only
propagate back into the bulk at a finite speed. Consequently,
if the time scale for cell proliferation is shorter than that of
this propagation, areas where the interface is more advanced
grow faster. Along with this, surface tension, coming from the
bounce-back condition in our LBM, also clearly has an effect
on interface dynamics. The dynamics of h are thus, to lowest
order, governed by

∂t h(y, t ) = k0 + k1
(
h(y, t ) − h̄

) + γ ∂2
y h(y, t ), (7)

where γ is the surface tension, k0 is a baseline growth rate
stemming from the fact proliferation occurs across the length
of the tissue, and the term in k1 is a first-order correction to
this, reflecting the increased growth rate due to lower den-
sities in more advanced interface positions. We define h̄ =
1/L

∫ L
0 h(y).dy, where L 	 1. We note that this equation is

far more general than our LBM and applies to any system in
which the growth rate of the interface depends on its position.
To probe the stability of this system, we perform linear stabil-
ity analysis on Eq. (7). We add a small amplitude perturbation
of the form δh = h0eωt+iqy, where |δh| � 1 and ω describes
the growth rate of each wave number q, to a flat interface
h̄ → h̄ + δh. Doing so does not change the mean position of
the interface and so yields the dispersion relation

ω(q) = k1 − γ q2, (8)

which can be seen plotted in Fig. 4 in the large L limit. From
Fig. 4 it is clear that the fastest growing mode will always
be the largest one permitted by the system, the system size,
and that the growth rate can be positive if wave numbers
less than

√
k/γ are permitted, corresponding to system sizes

L >
√

γ /k. This is why the instability is only seen at suf-
ficiently large system sizes, as the system only becomes
unstable at a critical length Lc = √

γ /k. However, we note
that Lc is dependent on system parameters and so may not be
very large if the growth rate is sufficiently fast or the surface
tension weak.

To demonstrate that this is indeed the instability mecha-
nism, we implement a different growth regime while keeping
the overall growth rate constant. We restrict growth to being
in a specified section of lattice sites in the bulk, far from
the interface. We do this in a system of size L = 640, where
the instability was previously observed. While the biologi-
cal plausibility of this scenario is debatable, introducing this
type of growth removes the purported instability mechanism
as the width of proliferating region is constant across the
entire domain length L and so independent of the interface
position. As can be seen in Appendix B, introducing this
growth regime eliminates the instability. These results suggest
that any growing system, where the number of constituents
that are able to proliferate increases locally where the inter-
face advances, could be susceptible to this system spanning
instability.

V. DISCUSSION AND OUTLOOK

We present an LBM for modeling growing, active systems.
Our bounce-back method for the interfacial dynamics ensures
well-defined, freely moving boundaries that allows for the
proper physics of growing tissues to be captured using a
LBM. Using this model, we demonstrate that the growth of
the boundary driven purely by proliferation displays scaling
behavior consistent with the KPZ universality class, but also
displays an instability in physiologically relevant proliferation
regimes where proliferation is concentrated at the boundary.
To understand its emergence, we formulate an analytical the-
ory to demonstrate this instability arises due to a proliferation
rate dependent on the position of the interface. This theory
is far more general than the particular model in which we
observed the instability, and asserts that any system where the
local growth rate is dependent on the interface position will be
susceptible to this instability.

The results presented here are for a single value of the fric-
tion coefficient μ. However, we note that for very high values
of μ the system appears to undergo a roughening transition
where the steady-state interface width becomes independent
of the system size L. Roughening transitions are known to
occur when fluctuations on the system are sufficiently sup-
pressed [38] and an interesting avenue of future work would
be to investigate this transition, and the impact of friction on
the system more generally, in more detail.

Also, here the only activity in the system is due to cell pro-
liferation, focusing our study on systems where the dynamics
are dominated by growth processes. However, there are many
biological contexts where cell motility, which can be included
in the model due to its flexibility [24], plays an important role
in the collective behavior of the system. Exploring the effect
of motility, its interplay with cell division, and the impact
this has on the dynamics of the boundary and the onset of
instability, presents an interesting avenue for future work.
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FIG. 5. Restricting proliferation to the bulk removes the instability. (a) Time evolution of w when proliferation is (blue) density dependent
and (orange) permitted only in the bulk. Stars indicate times at when profiles of the same color are depicted in (b) and (c). Time evolution of
the interface position h shifted by the average interface position h̄ for a system of size L = 640 with (a) density-dependent proliferation and
(b) proliferation restricted to the bulk, away from the interface. Darker colors indicate later times.
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APPENDIX A: LBM IMPLEMENTATION

We initialize our system by setting the initial velocity field
to 0 everywhere and generating an initial density distribution
with a flat interface, centered around some initial average
density ρinit , uniformly distributed on [0.9ρinit, 1.1ρinit]. From
these initial distributions we calculate an initial f SS

i , which we
set as our initial fi.

The algorithm then proceeds in the following steps:
(1) Streaming step to generate intermediate distribution

f ∗
i (t + �t, r + cei�t ) = fi.

(2) Calculate ρ and u from f ∗
i .

(3) Add mass from cell proliferation.
(4) Calculate u∗ and hence f SS

i .
(5) Redistribution step:

(i) If ρ(r) � ρc: redistribute fi = f ∗
i − [ f ∗

i −
f SS
i ] / τ .

(ii) If ρ(r) < ρc: set fi = f j where e j is the reverse
direction of ei (1 ↔ 4, 2 ↔ 5, 3 ↔ 6).
(6) Add noise: fi → fi + ηi, provided ρ > ρc.
(7) Correct any negative values of fi that arise from adding

noise:
(i) If f0 < 0: set f0 = 0. This will change the density,

so rescale each direction according to fi → ρ fi/� j f j .
(ii) If fi < 0 for i > 0: for i > 0, set f j = f j + | fi|

where e j is the reverse direction of ei (1 ↔ 4, 2 ↔ 5, 3 ↔
6) and set fi = 0.
As our tissue grows we advance the rear wall such that it

is always at least max(50, 10w) lattice units behind h̄. We use
system parameters c = 1, ρc = 0.05, τ = 1, ρinit = 0.1, σ =
0.01, μ = 0.001, g = 0.001, and ρcell = 0.01. For the density-
dependent growth regime we use ρ0 = 0.15.

APPENDIX B: SUPPRESSING THE INSTABILITY

To test the purported instability mechanism, we compare
the density-dependent growth regime at L = 640, where we
see the instability, with a growth regime where proliferation
is restricted to the first 30 columns of lattice sites from the
rear wall, but uniform within this region [Fig. 5]. We can see
that introducing this regime with growth restricted to the bulk
suppresses the instability, in agreement with our theory.
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