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Intermittent attractive interactions lead to microphase separation in nonmotile active matter
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Nonmotile active matter exhibits a wide range of nonequilibrium collective phenomena yet examples are
crucially lacking in the literature. We present a microscopic model inspired by the bacteria Neisseria meningitidis
in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we
show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining
the Active Model B+ class. In particular, we confirm the presence of microphase separation by solving the
kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation
mechanism tuning the typical cluster size, e.g., in populations of bacteria interacting via type IV pili.
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I. INTRODUCTION

All matter is built up from smaller components; active
matter is no different. Often of biological inspiration, ac-
tive matter generically denotes systems of particles which
consume energy from their surroundings [1,2]. While this
continuous consumption of energy leads to the breaking
of time-reversal symmetry at the microscopic scale and
thus maintains active systems out of equilibrium, striking
nonequilibrium features generically stem from interactions
between active particles or with their environment [3–5].
For instance, dense suspensions of interacting self-propelled
particles display a wealth of phenomena forbidden by equi-
librium thermodynamics including long-range order [6–10],
clustering [11–14], or phase separation even in the absence
of attractive interactions (e.g., motility-induced phase separa-
tion) [15–21]. Connecting emergent structures and collective
dynamics to the behavior of individual particles through
coarse-graining techniques remains an open problem which
has seen recent development [22–27].

Equilibrium phase separation remains one of the sim-
plest examples of order emerging from disorder, characterized
by the spontaneous formation of regions with contrasting
characteristics within a system. The dynamics of phase sep-
aration in a passive binary fluid are captured by Halperin
and Hohenberg’s Model B [28] which describes the evo-
lution of a conserved scalar order parameter in a system
respecting time-reversal symmetry (TRS) [29–32]. Model B
itself can be derived from dynamical density functional the-
ory (DDFT)—central to the analysis of passive, soft matter
systems [33,34].

In contrast, recent works have focused on field theories
capturing the TRS breaking present in active systems. Using
a top-down approach, TRS violating terms can be added to
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Model B equations to form a mean-field theory for motility-
induced phase separation leading to the so-called Active
Model B [35]. Interestingly, the addition in this active field
theory of another term (of the same order in the expansion in
the order parameter) leads to a second nonequilibrium field
theory, Active Model B+ (AMB+), which has been shown
numerically and analytically to display microphase separa-
tion, driven by a reverse Ostwald ripening process [36–39].
The suppression of Ostwald ripening was also discussed in
the context of coarse-grained models of active emulsions used
to study phase separation in systems driven out of equilibrium,
e.g., by chemical reactions [40–44].

In many-body physics, complex and robust collective be-
haviors can be the result of interactions between very simple
constituent agents. While previous microscopic models have
successfully produced the AMB+ phenomenology, these have
focused on motile active matter—by far the most studied class
of active systems. In contrast, minimal models of nonmotile—
and in a sense truly scalar—active matter are crucially lacking
in the literature, although they offer further examples of
the nonequilibrium phenomena present in biological sys-
tems. Breaking from the motile active matter paradigm, we
introduce in this article a minimal microscopic model of non-
motile particles whose interactions are governed by an active
stochastic process and show that breaking TRS at the level
of agent interactions can lead to striking consequences at the
mesoscopic scale.

Active switching was previously introduced in microscopic
models to generate particle shape changes [45], define the
particle-particle interactions [46–48], a particle’s interactions
with an external field [49] or motility state [50,51]. Our
model is inspired by the bacterium Neisseria meningitidis
which interacts with its neighbors and environment through
type IV pili, hairlike appendages whose contraction generates
pulling forces [46,52]. In isolation, the bacterium extends
and retracts its pili over time. Upon proliferation, the pili of
neighboring bacteria touch; following contact, their retraction
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FIG. 1. Schematic of microscopic interactions. (a) The state of
particle i is set by its internal variable, εi, which switches between 0
and 1 with fixed rates, kon and koff . The pair potential for neighboring
particles depends on the product εiε j . (b) Pair potentials used in
the simulations for εiε j = 0 (red) and εiε j = 1 (green). A WCA
potential sets the particle size σ∗ and the attraction range is set to
σc = 2σ∗ [56].

pulls pairs of bacteria together, eventually leading to bacterial
clustering.

Recently, the mechanical properties of bacterial aggregates
were explored using experiments and phenomenological con-
tinuum models [52–54]. In contrast, we describe minimally
the pili interaction and introduce a model in which particles
stochastically switch between attractive and purely repulsive
states. We argue that this effective description loses none
of the fundamental physics but allows for significant ana-
lytical progress. While the symmetries of our microscopic
model are consistent with Active Model B and B+, a formal
coarse-graining is required to conclude. We derive a density
equation which we show is of AMB+ form by identifying
the TRS breaking terms [36,37]. Finally, we confirm the
presence of microphase separation and reverse Ostwald ripen-
ing as predicted by the field theory by solving the kinetic
equations numerically and compare these results to direct
numerical simulations of the microscopic model, fully charac-
terizing the nonequilibrium structure displayed by the system.

II. MICROSCOPIC MODEL

A. Theoretical model

We consider a system of N particles characterized by
their position ri and an internal variable εi ∈ {0, 1} defining
their interactions. Any two particles interact through steric
repulsion when their center-to-center distance is such that
|ri − r j | = ri j < σ∗, independently of the value of εi and ε j .
If the internal variables of both agents are such that εi = ε j =
1, these particles are additionally subjected to an attractive
force with longer range σc > σ∗ [see Fig. 1(a)]. We refer to

the case where εi = 1 (respectively, εi = 0) as the on state
(respectively, the off state). We can define the total pair in-
teraction potential as the superposition of purely repulsive U0

and purely attractive U1 contributions [see Fig. 1(b)]:

U (ri j, εiε j ) = U0(ri j ) + εiε jU1(ri j ). (1)

The motion of the particles is governed by the overdamped
Langevin equation

ṙi = − 1

γ

∑
j �=i

∇riU (ri j, εiε j ) +
√

2Dηi, (2)

where γ is a friction coefficient, D is the bare-diffusion coef-
ficient which sets the temperature in the system, and ηi is a
zero mean, unit variance Gaussian white noise.

We introduce activity by allowing the particles to stochasti-
cally switch between the on and off states with constant rates,
generically leading to intermittent attractive forces [Fig. 1(a)].
Formally, the internal variables {εi}i∈[1,N] follow independent
telegraph processes [55] with switching rates kon and koff

(see [56] for details). Our model falls in the wide class of
nonmotile active matter as the constituent agents are not self-
propelled, but rather consume energy locally to change their
interactions with neighboring agents.

B. Simulations

First, we numerically solve the equation of motion [21,57].
The interaction potentials U0 and U1 are defined following the
Weeks-Chandler-Anderson (WCA) decomposition [56,58]:

U0(ri j ) =
{

4ε[(σ/ri j )12 − (σ/ri j )6] + ε, ri j < σ∗
0, ri j � σ∗,

(3a)

U1(ri j ) =
⎧⎨
⎩

−ε, ri j < σ∗
4ε[(σ/ri j )12 − (σ/ri j )6], σ∗ � ri j � σc

0, ri j � σc.

(3b)

The results of our coarse-graining procedure below are
insensitive to the specific choice of pair potential, provided
that U0 is purely repulsive and divergent and U1 is attractive.
Thus, we expect the results of our numerical simulations to be
independent of the specific choice of potentials. To ensure that
the system exhibits liquid-gas phase separation with no active
switching, we work in the limit ε � kBT . Here, we restrict
our focus to the case where kon = koff = k and keep the total
volume fraction of agents fixed at φ̄ = 0.3. We nondimension-
alize the switching rate setting κ = kσ 2/D, where σ is the
nominal particle diameter.

We quantify the structure in the numerical simulations
using three metrics: the radius of gyration Rgyr, the demixing
index Idemix and the size of the largest cluster smax. The radius
of gyration measures the average distance between a particle
and the center of mass of the particles. We initialize each
simulation with all the particles collected in a single drop, so if
the radius of gyration remains generally constant in time, we
conclude that the majority of particles are still near the center
of the initial drop and the system is exhibiting full phase sep-
aration. If this measure increases significantly, then the initial
configuration is not stable and the system is not sustaining full
phase separation. The demixing index Idemix is defined as the
fraction of neighboring particles in the same state, allowing
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FIG. 2. Emergent structures in active switching system. (a) Ra-
dius of gyration Rgyr, (b) demixing index Idemix, and (c) maximal
cluster size smax for switching rates κ ∈ [10−2, 102] and ε � kBT .
Representative configurations obtained in simulations at steady state
for (d) κ = 0, (e) κ = 10−2, (f) κ = 10, and (g) κ = 100.

us to measure separation of on and off particles. Finally, we
calculate the size of the largest cluster in the system smax,
which tells us whether the system is phase separating at all.
Microphase separation is characterized by a large radius of
gyration and a largest cluster size smax � 1.

As we vary the switching rate between 10−2 � κ � 102,
we investigate the emergence of macroscopic structures
(Fig. 2). At large switching rates κ � 1, the system fully
phase separates and displays a single macroscopic drop as
can be seen in Figs. 2(f) and 2(g); this is evidenced by a
low radius of gyration Rgyr for κ � 10 as well as a maximal
cluster size smax approaching the system size. Further, we
observe that the stable drop is fully mixed with a demix-
ing index Idemix ≈ 0.5, defined as the fraction of neighboring
particles in the same state [56]. For κ � 1, the diffusion
timescale is much larger than the time between switching
events; agents do not have time to diffuse out of reach

of the central drop before switching on and being pulled
back.

As the switching rate decreases, both the radius of gy-
ration and the demixing index monotonically increase. At
low switching rates, the system does not reach full phase
separation; instead, we argue that at intermediate switching
rates our model exhibits microphase separation, where the
system supports the coexistence of a large number of small
clusters [Fig. 2(e)]. We conclude that the system demixes
and self-organizes into clusters of on particles surrounded
by a gas of off particles. The maximal cluster size reaches
a minimum when κ ≈ 1 and increases again as we lower κ .
Liquid-gas phase separation and demixing are strengthened as
κ decreases. Indeed, longer times between switching events
allow the nucleated clusters of attractive particles to grow
further. In the singular limit where κ = 0, we observe a fully
demixed state displaying a stable single drop of on particles
surrounded by a diffusive gas of off particles. In the limit
ε � kBT , the initial fraction of on particles controls the size of
this drop as strong attraction ensures that on particles remain
in the condensed phase.

III. COARSE-GRAINING PROCEDURE

A. Many-body Smoluchowski equation

To quantify these structures analytically, we derive an
equation for the particle density. Starting from a many-body
Smoluchowski equation, an evolution equation for the N-
agent distribution function ψ ({ri, εi}, t ), we explicitly coarse-
grain our microscopic model by finding an approximate
closure to the Bogoliubov-Born-Green-Kirkwood-Yvon hier-
archy [see details in the Supplemental Material (SM) [56]].
We set γ = 1 and write this equation as

∂tψN =
N∑

n=1

[
∇rn ·

[∑
m

∇rnU (rnm, εnεm) + D∇rn

]
ψN

+kSnψN − kψN

]
, (4)

where rnm = |rn − rm| and we have defined the operator Si as

SiψN = ψN (r1, . . . , rN , ε1, . . . , 1 − εi, . . . , εN ). (5)

Note that by definition S2
i ψN = ψN . We define the single-

agent distribution function, ψ1, as

ψ1(r, ε, t ) =
1∑

ε2=0

· · ·
1∑

εN =0

∫
dr2 · · ·

∫
drN NψN , (6)

where we have dropped the subscript on the tagged particle’s
position and internal variable.

We apply the same operations to the right-hand side of
Eq. (4) as we did in Eq. (6), deriving an evolution equation for
ψ1:

∂tψ1(r, ε, t ) = ∇r · [D∇rψ1 − F(r, ε, t )] + kS1ψ1 − kψ1,

(7)
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where we have introduced the mean force on the tagged parti-
cle, F, as

F(r, ε, t ) =
1∑

ε′=0

∫
dr′[−∇rU (r, εε′)]ψ2(r, r′, ε, ε′, t ) (8)

for r = |r − r′| and the two-agent distribution function, ψ2.
We are left to approximate the mean force F. Following

a classical dynamical density functional theory (DDFT) ap-
proach valid in dense regimes where the structure of the fluid
is dominated by hard-core interactions [30,34], we conclude
that the mean force due to repulsive interactions on a particle
in state ε ∈ {0, 1} is

Frep(r, ε) = −ψ1(r, ε)∇μrep[ρ(r)], (9)

where we have defined the local density function as ρ(r, t ) =∑1
ε=0 ψ1(r, ε, t ) and μrep(ρ) is the chemical potential due to

repulsive interactions, which can be written as the functional
derivative of a free energy functional as in the DDFT equa-
tion [30,34] (see details in the SM [56]). For the contribution
of the attractive interactions, we define ρε(r, t ) = ψ1(r, ε, t )
and make the mean-field approximation ψ2(r, r′, 1, 1, t ) ≈
ρ1(r, t )ρ1(r′, t ) for the two-agent distribution function, result-
ing in

F(r, 1) = Frep(r, 1) − ρ1(r)∇(U1 � ρ1), (10)

where we have introduced the notation � to represent a convo-
lution between U1 and ρ1 [56]. This mean-field approximation
is suitable as the attractive interactions are weak [30].

B. Kinetic equations

At a macroscopic level, we find that the state of our system
is described by the density fields ρ0(r, t ) and ρ1(r, t ) for the
off and on particles, respectively. By (7), (9), and (10), the dy-
namics for these fields are governed by the kinetic equations

∂tρ0(r, t ) = ∇ · J0 + s(ρ0, ρ1), (11a)

∂tρ1(r, t ) = ∇ · J1 − s(ρ0, ρ1), (11b)

where the effect of the active switching is entirely
contained in the coupling term s(ρ0, ρ1) = k(ρ1 − ρ0).
These kinetic equations are reminiscent of those seen in
reaction-diffusion density functional theory (R-DDFT) mod-
els [33,45,47,49,59]. Self-diffusion and particle-particle inter-
actions are expressed through the fluxes:

J0 = D∇ρ0 + ρ0∇μrep(ρ), (12a)

J1 = D∇ρ1 + ρ1∇μrep(ρ) + ρ1∇(U1 � ρ1). (12b)

We note that although both on and off particles are subject
to steric interactions, only on particles are subject to attractive
interactions [last term in Eq. (12b)].

Interestingly, we note that in the case where k = 0,
Eqs. (11) and (12) describe two classical equilibrium systems:
a hard-sphere gas and a phase-separating Cahn-Hilliard-type
fluid. Our results so far show that by coupling these two fluids,
the resulting system can exhibit fundamentally nonequi-
librium phase separation behaviors, including microphase
separation. While this has been shown in previous studies

of active emulsions using phenomenological continuum mod-
els [40–43], we here derive a closed equation for ρ(r, t ) and
show formally that it pertains to the AMB+ class.

IV. AGENT DENSITY AND ACTIVE MODEL B+
A. Closed equation for agent density

Starting from Eq. (11), we write an equation for the total
density of particles

∂tρ(r, t ) = ∇ ·
[
ρ(r)∇

(
δF[ρ(r)]

δρ(r)

)
+ ρ1(r)∇(U1 � ρ1)

]
,

(13)

where although one cannot generically write a free-energy
functional for active systems, we follow a common notation
in field theories of active phase separation [35–37] and write
the passive terms in our density equation as the gradient of the
functional derivative of a free-energy-like functional

F[ρ(r)] =
∫

dr (Dρ(r){log[ρ(r)] − 1} + frep[ρ(r)]),

(14)
where frep is the free-energy contribution due to repulsive
interactions which satisfies f ′

rep(ρ) = μrep(ρ).
The terms in this functional represent the local density ap-

proximations for the so-called ideal gas contribution and the
contribution due to repulsive interactions. The attractive con-
tribution, which contains implicitly the activity, contributes
in (13) the necessary terms for our model to be of AMB+
form [36].

To show this, we first write Eq. (13) in closed form.
The density of on particles is related to the density of all
particles via ρ1(r) = P (ε = 1|ρ(r) = ρb) × ρ(r), where this
conditional probability can be seen as the fraction of particles
in a region of bulk density, ρ ≡ ρb with internal variable
ε = 1. We argue that this conditional probability is a function
of the switching rate and the local total density, thus we
define a function Sk (ρ) = P (ε = 1|ρ(r) = ρ) to denote this
functional dependence. We measure Sk (ρ) numerically in the
simulations of our microscopic model for a wide range of
switching rates as shown in Fig. 3. Here, we made a local
density approximation and implicitly assume that the shape
function Sk (ρ) does not depend on the gradient of the density
field [30].

B. Fast switching limit pertains to Model B

If switching happens much faster than diffusion, k �
D/σ 2, then we argue that there should be no correlation be-
tween the particles local density and their state; we conclude
that for large switching rates, Sk (ρ) ≡ 1

2 . In this case, we
absorb the contribution of the attractive interactions to the
probability current in a redefined free energy leading to a den-
sity equation of Model B form (see [56] for a full derivation).
We conclude that the phase separation in this limit is driven
by an effective attraction, with a quarter of its full strength,
between any pair of agents leading to full phase separation as
predicted by Model B [28].
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FIG. 3. Measuring Sκ (ρ ) numerically. Shape function Sκ (ρ )
measured from simulations of the microscopic model with nondi-
mensional switching rates κ ∈ [10−2, 102] and total volume fraction
of agents φ̄ = 0.3 as the fraction of on agents in circular regions of
radius σc with number of agents per unit area ρ.

C. Fast (but finite) switching leads to Active Model B+
Here, we work perturbatively around the fast switching

limit. When considering large but finite values of k, we perturb
the shape function to linear order and write Sk (ρ) = 1/2 +
Ak (ρ − ρc), where we have defined ρc such that Sk (ρc) = 1

2 .
In doing so, we are implicitly modeling a small amount of
demixing due to the finite switching rates. From our numerical
analysis, we determine that ρc is independent of the switching
rate k but may in general depend on other microscopic param-
eters.

After substituting this linear perturbation in the convo-
lution in Eq. (13) and taking a gradient expansion of the
nonlocal terms, we can rewrite the contribution of the attrac-
tive interactions to the current up to O(∇4ρ3). The coefficients
of each of the TRS breaking terms are proportional to μk =
Ak
4 (2ρcAk − 1)

∫
dr U1(r)r2 [56]. Finally, we use the fact that

adding a term of the form αρ|∇ρ|2 to the functional F[ρ(r)]
generates terms proportional to α∇(|∇ρ|2) − 2α(∇ρ)∇2ρ −
2αρ∇3ρ in the current. Choosing α = −3μk/2 and again
redefining F[ρ], we write the density equation in the form

∂tρ(r, t ) = ∇ ·
{
ρ(r)

[
∇

(
δF[ρ(r)]

δρ(r)
− 5μk

2
|∇ρ(r)|2

)

+μk[∇2ρ(r)]∇ρ(r)

]}
. (15)

Finally, we conclude that our model belongs to the AMB+
class, with constants λ = −5μk/2 < 0 and ζ = −μk < 0 in
the notation of Ref. [36].

D. Active switching drives microphase separation

We expect to observe the emergence of microphase sep-
aration for a range of switching rates. We confirm this by
numerically solving the R-DDFT equations (11) [56,60,61].
Specifically, we fix the total density of agents ρ̄ and size

FIG. 4. Numerical analysis of kinetic equations. Numerical so-
lutions of Eqs. (11) for ρ̄ = 0.16 with ε � kBT [56]. Steady-state
solutions show microphase separation (MPS) for (a) κ = 0.01 and
(b) κ = 1 but full phase separation (FPS) for (c) κ = 100. (d) Mean
droplet radius 〈rc〉 is nonmonotonic in the switching rate κ across
the (i) microphase separated and (ii) full phase separated regimes, in
agreement with Fig. 2(c).

of the solution domain and vary the switching rate κ . We
set ε � kbT as to ensure phase separation from a nearly
homogeneous initial condition. For moderate switching rates,
the system’s steady state supports the coexistence of droplets
driven by a reversal of Ostwald ripening [56] (Fig. 4). Inter-
estingly, droplet sizes are nonmonotonically controlled by the
switching rate, κ . At higher switching rates, we observe full
phase separation characterized by a single drop in the solution
domain.

Note that the suppression of Ostwald ripening was first
discussed in the context of active emulsions [40–42]. We
confirm these phenomenological results through the proper
coarse-graining of a minimal microscopic model. As argued
above, at a macroscopic level, our system can be seen as a
binary fluid driven away from equilibrium by active switching
dynamics between the two components.

V. MICROPHASE SEPARATION AND ACTIVE MODEL B+
Finally, we connect our two main results: our derivation of

the AMB+ density equation used a perturbation of the fast-
switching limit while the presence of microphase separation
was shown for moderate switching rates. In particular, our
linear approximation of the shape function is valid for any
k, provided that |ρ − ρc| is small enough. This is sufficient
to conclude on the classification of AMB+ for all switching
rates k > 0 [56].

To identify the conditions for microphase separation, we
need to go beyond this linear perturbation. To do so, we make
an ansatz for the functional form of Sk (ρ) motivated by our
computational results (Fig. 3) that we argue is valid for all
k. Using this ansatz, we evaluate the coefficients of the TRS
breaking terms and compare them to [36] in which microphase
separation in the (deterministic) AMB+ equation was first
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studied. We find our results to be consistent for all switching
rates [36,56].

Namely, for infinitely fast switching, one recovers an ef-
fective equilibrium field theory of Model B type with reduced
attractive interactions. For fast (but finite) switching, shallow
gradients in the shape function imply negative but small co-
efficients of the TRS breaking terms leading to full phase
separation (FPS). For moderate switching rates, the gradient
steepens generating large and negative coefficients leading to
reverse Ostwald ripening and microphase separation (MPS).
We argue that k controls how deep in the MPS region the
system is and that the nonmonotonic dependence of the clus-
ter size stems from the nonmonotonic behavior of μk as we
decrease k [56].

VI. DISCUSSION

Using a bottom-up approach, we introduce a minimally
active microscopic model inspired by type IV pili-mediated
interactions. Through a rigorous coarse-graining procedure,
we show that its density equation is of Active Model B+
form. We conclude that the switching rate associated with the
pili-mediated interactions can set the typical cluster size in a
system of bacteria such as N. meningitidis.

This nonmotile active matter system is shown to belong to
the Active Model B+ class and exhibits microphase separa-
tion driven by a reversal of the Ostwald ripening process [36].
Further, we reveal in our model the existence of microphase
separation, controlled by the switching rate k. In the con-

text of bacteria dynamics, intermittent attractive interactions
mediated by pili dynamics lead to a mechanism controlling
bacterial clustering and regulating typical cluster sizes. More
generally, nonequilibrium field theories have been used to for-
mally classify the emergence of self-organization and phase
separation in active systems. Here, our coarse-graining al-
lows us to connect microscopic models to these field theories
and we believe that the current work lays the foundation
for a more systematic study of microscopic active matter
models.

In a field dominated by dry motile active matter models,
we show here that the terms in the corresponding field theo-
ries breaking time-reversal symmetry, producing entropy, and
thus leading to nonequilibrium collective behavior—such as
microphase separation—can arise from models vastly differ-
ent from the now classical self-propelled particles with steric
repulsion as studied in the context of motility-induced phase
separation. In contrast with those motile active matter models,
the model we introduce here is truly scalar as activity does
not translate to self-propulsion but rather is brought about by
allowing the particles to dynamically change their interactions
with their neighbors. In turn, our model breaks time-reversal
symmetry in a manner which is preserving momentum conser-
vation at the level of the interparticle interactions. While our
study focuses on bacterial clustering, we believe our model
has much wider applications and can, for instance, be used
to model the dynamics of eukaryotic spheroids, in which
our fluctuating forces would capture intercellular tension
fluctuations [54,62].
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