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Abstract
A positive rate of entropy production at steady-state is a distinctive feature of
truly non-equilibrium processes. Exact results, while being often limited to sim-
ple models, offer a unique opportunity to explore the thermodynamic features of
these processes in full detail. Here we derive analytical results for the steady-
state rate of entropy production in single particle systems driven away from
equilibrium by the fluctuations of an external potential of arbitrary shapes. Sub-
sequently, we provide exact results for a diffusive particle in a harmonic trap
whose potential stiffness varies in time according to both discrete and contin-
uous Markov processes. In particular, studying the case of a fully intermittent
potential allows us to introduce an effective model of stochastic resetting for
which it is possible to obtain finite non-negative entropy production. Alto-
gether, this work lays the foundation for a non-equilibrium thermodynamic
theory of fluctuating potentials, with immediate applications to stochastic reset-
ting processes, fluctuations in optical traps and fluctuating interactions in living
systems.
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1. Introduction

Stochastic thermodynamics represents one of the most powerful tools at our disposal in the
effort to characterize generic properties of non-equilibrium processes. It provides a frame-
work to extend the ideas of traditional thermodynamics to regimes and scales where some of
the assumptions underlying the latter theory break down [1–3]. In particular, the possibility of
developing a thermodynamically-consistent description of mesoscopic systems subject to non-
negligible noise (a paradigmatic example being overdamped colloidal particles) has unveiled
a wealth of fascinating relations among the fluctuating counterparts of traditional thermody-
namic observables, such as work, heat and entropy [4–6]. For instance, in the presence of
fluctuations, the second law of thermodynamics is only satisfied upon taking suitable averages
over an ensemble of stochastic trajectories or over long observation times.

Over the last decades, the average rate of entropy production, denoted Ṡi, has attracted
considerable attention as a way of quantifying the degree of departure from equilibrium. For
instance, genuinely non-equilibrium processes (as opposed to those relaxing to equilibrium),
such as overdamped active particles driven by injection and dissipation of energy at the single-
agent level [7, 8], are characterized by a positive average entropy production at steady-state
which equals the rate at which heat is dissipated into the environment.

Interestingly, entropy production has also been formalized as a measure of the breaking
of the global detailed balance condition [3, 9, 10]. In particular, it has long been estab-
lished for Markovian processes [11] that the thermodynamic entropy production has an
equivalent information-theoretic interpretation as the relative dynamical entropy (i.e., the Kull-
back–Leibler divergence [12]) per unit time of the ensemble of forward paths and their time-
reversed counterparts, thus signaling the breaking of time-reversal symmetry whenever Ṡi > 0.
Based on this perspective, it was further shown that the rate of entropy production is inversely
proportional to the minimal time needed to decide on the direction of the arrow of time
[13, 14]. Entropy production has additionally been found to relate non-trivially to the precision
and efficiency of the underlying stochastic process via uncertainty relations [15, 16].

In this work, we consider the average entropy production associated with a Brownian par-
ticle subject to diffusion in a fluctuating trapping potential V(x;α(t)) whose shape is governed
by a parameter α(t). In most of what follows, we will assume the potential to be harmonic and
centered at the origin, with fluctuations acting solely on the potential stiffness. In the absence
of fluctuations, this model reduces to the well-known Ornstein–Uhlenbeck (OU) process [17],
a prototypical equilibrium stochastic process characterized by a Gaussian steady-state prob-
ability density function for the particle position x, and zero entropy production. As we will
demonstrate, letting α(t) evolve stochastically results generically in a departure from thermo-
dynamic equilibrium, signaled by non-vanishing probability currents at steady-state and thus
a positive rate of entropy production.

Introducing fluctuations into what would otherwise be time-independent model parameters
is a recurrent theme in non-equilibrium physics. Indeed, think for example of run-and-tumble
(RnT) and active Ornstein-Uhlenbeck particles (AOUPs), whose self-propulsion velocity is
described by a telegraph process and an OU process, respectively [18, 19]. Fluctuating inter-
actions are a generic feature of living systems and can have striking consequences including
clustering in populations of bacteria interacting via type IV pili [20–22], arrested coalescence
in cellular aggregates [23] and fluidization of embryonic tissues [24]. Moreover, a clear ther-
modynamic understanding of trapping by fluctuating harmonic potentials could have important
implications in a number of mesoscopic systems. For instance, experimental manipulation of
colloidal beads [25] and molecular motor cargoes [26–29] by optical tweezers are likely to be
subject to non-negligible fluctuations (e.g. from the laser intensity).
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Furthermore, Brownian motion in an intermittent harmonic confining potential represents a
realistic implementation of stochastic resetting [30–34]. Originally introduced to allow Brow-
nian dynamics to reach a non-equilibrium stationary state at long times [34, 35], stochastic
resetting has been under intense scrutiny over the last decade partly due to its non-trivial impact
on first-passage statistics [35, 36] and has imposed itself as a pillar of non-equilibrium statis-
tical mechanics. As a consequence, the effects of resetting have been studied in a swath of
physical systems: from classical diffusive processes such as Brownian motion, random walks,
Lévy walks and Lévy flights [37–42], to the random acceleration process [43] and the asym-
metric exclusion processes [44, 45]. More recently, resetting has also found applications in
stochastic living systems including in models of active particles [46–48], active transport in
living cells [49], enzymatic reactions [50, 51], population genetics [52] and in models of cell
division [53].

Of interest here is the fact that the vast majority of these studies generically consider
fully irreversible and instantaneous resetting. While various works have addressed the non-
equilibrium thermodynamics of resetting, the typically assumed irreversibility of resetting
events requires a special treatment [54–56]. In particular, these studies made use of alternative
definitions for the entropy production whose connection with time-reversal symmetry break-
ing remains unclear. Here, we argue that a realistic implementation of an effective resetting
protocol can offer a relevant perspective on these controversies.

The paper is structured as follows: in section 2, we derive equations for the steady-state
entropy production for a general single-particle drift–diffusion system with fluctuating poten-
tials, considering both discrete and continuous state spaces for the potential states. The rest of
the paper is dedicated to specific examples of these single-particle systems. In section 3, we
consider the simple example of an intermittent harmonic potential to illustrate a practical appli-
cation of the theory, calculating the steady-state entropy production exactly in equation (29).
We then consider a generalized two-state OU model in section 4 and derive its entropy produc-
tion in equation (40), before extending this result to an arbitrary number of states in section 5,
deriving equation (47). In section 6, we study an OU process with a stiffness that varies contin-
uously in time, writing the entropy production in terms of the variance of the particle position
in equation (63). Finally, our results are summarized in section 7.

2. Steady-state entropy production in drift–diffusion processes with
fluctuating potentials

In this first section, we derive the general expression for the steady-state entropy production
of a Brownian particle diffusing on the real line, x ∈ R, in a confining potential V(x;α(t)),
whose shape is set by α(t), a random variable that evolves in continuous time according to
Markovian dynamics (see figure 1). While in the rest of this study we focus on the case of a
harmonic confining potential V(x;α(t)) = α(t)x2/2, the functional form of the potential will
remain generic in this section. First, we derive the steady-state entropy production in the case
where the potential follows a discrete Markov process; in this case, we assume that the potential
jumps in between different ‘states’ corresponding to particular values of α(t). We then derive
the corresponding results in the case where α(t) follows a generic continuous Markov process.
Note that for the sake of simplicity, we will only consider in what follows one-dimensional sys-
tems; however, our results can be straightforwardly generalized to higher dimensions, assuming
independent Brownian fluctuations in each dimension, by treating each coordinate as a separate
degree of freedom.
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Figure 1. Diffusion in fluctuating potentials. In many realistic settings, trapping poten-
tials can be subject to stochastic fluctuations. This phenomenon generically breaks global
detailed balance and can thus drive a passive Brownian particle trapped in the potential
away from thermodynamic equilibrium, such that the corresponding entropy production
is non-zero even at steady-state. In the simplest case, a stochastic potential switches
between a pre-defined set of functional forms Vi(x) = V(x; αi), with i ∈ {1, 2, 3},
according to a Markov jump process with given, time-independent transition rates.

2.1. Fluctuating potentials as a discrete Markov process

First, we model the fluctuations in the confining potential as arising from jumps among a
finite set of N distinct states. Namely, we let α(t) ∈ {α1,α2, . . . ,αN} evolve according to a
continuous-time, N-state Markov jump process with transition rate matrix K, where the matrix
element Ki j with i �= j denotes the rate at which the parameter switches from value α j to αi.
The diagonal elements are generically fixed by enforcing conservation of total probability,∑

i Ki j = 0, so that K jj = −
∑

i �= j Ki j.
The resulting stochastic dynamics for the parameter α(t) is thus given by

P
(
α(t +Δt) = αi|α(t) = α j

)
= δi j +ΔtKi j +O

(
Δt2

)
(1)

while the particle position is governed by the overdamped Langevin equation

ẋ(t) = − 1
γ
∂xV(x;α(t)) +

√
2Dη(t), (2)

where γ is a friction coefficient and η(t) denotes a Gaussian white noise with zero mean,
〈η(t)〉 = 0, and unit variance, 〈η(t)η(t′)〉 = δ(t − t′). We set γ = 1 without loss of generality.
The corresponding Fokker–Planck equation takes the form [17, 57]

∂tPi(x, t) = −∂xJi(x, t) +
∑

j

Ki jP j (x, t) (3)

for i = 1, 2, . . . , N, with Pi(x, t) the joint probability density that the particle is found at position
x with the potential in state i and Ji(x, t) the state-dependent probability current density, given
by

Ji(x, t) = − (∂xV(x;αi)) Pi(x, t) − D∂xPi(x, t). (4)
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By definition, the total probability is given by P(x, t) =
∑N

i=1Pi(x, t).
The Gibbs–Shannon entropy [58] of the joint probability density Pi(x, t) is defined as

S(t) = −
∑

i

∫
dx Pi(x, t) log

(
Pi(x, t)

P̄

)
, (5)

where P̄ is an arbitrary density introduced for dimensional consistency and we work in units
such that kB = 1. While an entropy S̃(t) could in principle be defined for any marginal of the
full probability density, as in e.g.

S̃(t) = −
∫

dx

[∑
i

Pi(x, t)

]
log

[∑
iPi(x, t)
P̄(x)

]
(6)

it is only for the couple (x,α) that the dynamics are Markovian and the standard toolkit of
stochastic thermodynamics can be applied straightforwardly. Further, our choice to consider
the full dynamics for the variables (x,α) allows us to define as we will see drift and switching
contributions to the entropy production which we relate to the heat dissipated in the various
heat baths coupled to the process. Differentiating S(t) with respect to time, we see

Ṡ(t) = −
∑

i

∫
dx ∂tPi(x, t) log

(
Pi(x, t)

P̄

)
(7)

and using equation (3), we obtain after integration by parts

Ṡ(t) = −
∑

i

∫
dx

[
Ji(x, t)∂xPi(x, t)

Pi(x, t)
+
∑

j

Ki jP j(x, t) log

(
Pi(x, t)

P̄

)]
(8)

which using equation (4), we rewrite as

Ṡ(t) =
∑

i

∫
dx

[
J2

i (x, t)
DPi(x, t)

+
Ji(x, t)∂xV(x;αi)

D
−
∑

j

Ki jP j(x, t) log

(
Pi(x, t)

P̄

)]
. (9)

By conservation of probability, we have

KiiPi(x, t) = −
∑
j�=i

K jiPi(x, t), (10)

which allows us to rewrite the third term on the right-hand side of equation (9) as∫
dx

∑
i, j

Ki jP j(x, t) log

(
Pi(x, t)

P̄

)
= −1

2

∫
dx

∑
i, j�=i

(Ki jP j(x, t) − KjiPi(x, t)) log

(
Ki jP j(x, t)
KjiPi(x, t)

)

+
1
2

∫
dx

∑
i, j�=i

(Ki jP j(x, t) − KjiPi(x, t)) log

(
Ki j

K ji

)
,

(11)

where we first re-write the sum on the left-hand side using equation (10), then consider the
corresponding sum with the indices i and j swapped. Since i and j are dummy indices, we write
the original sum as half times itself plus half times its counterpart with indices being swapped.

5
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We finally multiply the fraction in the log(·) term by a factor Ki jK ji
Ki jK ji

= 1 which changes only
the appearance of the terms on the right-hand side, then expanding to obtain the desired form
in equation (11).

Following the standard procedure [2, 3], the contributions to the rate of change of the
Gibbs–Shannon entropy are split into two terms

Ṡ(t) = Ṡi(t) + Ṡe(t), (12)

with the internal (or total) entropy production defined as

Ṡi(t) =
∑

i

[∫
dx

J2
i (x, t)

DPi(x, t)

]
+

1
2

∫
dx

∑
i, j�=i

(
Ki jP j(x, t) − KjiPi(x, t)

)
log

(
Ki jP j(x, t)
KjiPi(x, t)

)
(13)

and the external entropy production (or entropy flow) as

Ṡe(t) =
∑

i

[∫
dx

Ji(x, t)∂xV(x;αi)
D

]
− 1

2

∑
i, j�=i

(
Ki jP

tot
j (t) − KjiP

tot
i (t)

)
log

(
Ki j

K ji

)
, (14)

where Ptot
i (t) =

∫
dx Pi(x, t) denotes the marginal probability for the potential to be in state αi

at time t, irrespective of the particle position. We note that the entropy flow is written as the
sum of two terms: the first term, which we call the drift contribution, accounts for steady-state
currents in position space and is proportional to the heat dissipated into the bath driving the
fluctuations of the particle position; the second term, which we call the switching contribution,
originates purely from the switching dynamics. Physically, this contribution captures the rate
of heat dissipation into the bath driving the fluctuations of the potential.

This marginal probability satisfies the master equation

∂tP
tot
i (t) =

∑
j

Ki jP
tot
j (t) (15)

and its steady-state value Ptot
i,∞ = limt→∞ Ptot

i (t) can thus be obtained straightforwardly by iden-
tifying the unique eigenvector with eigenvalue zero of the matrix K. Note that while the entropy
flow is commonly associated with the rate of heat dissipation into the environment [9, 10],
the internal entropy production is usually the quantity of interest in the thermodynamic char-
acterization of non-equilibrium stochastic processes due to its connection with time-reversal
symmetry breaking [11], its link to the Kullback–Leibler divergence [12] and its role in fluc-
tuation theorems [4, 6]. For the sake of brevity, the denomination of entropy production will
henceforth be reserved for the internal contribution, Ṡi(t), only.

Assuming that the joint probability density Pi(x, t) relaxes to a steady-state at long times,
we have the equality

lim
t→∞

Ṡ(t) = lim
t→∞

[Ṡi(t) + Ṡe(t)] = 0. (16)

While both Ṡi and Ṡe vanish individually only for systems at equilibrium, the internal and
external contributions to the entropy production cancel each other exactly even in systems out
of thermal equilibrium. As a consequence, the steady-state internal entropy production can
equivalently be computed via the entropy flow and it is thus directly related to heat dissipation.
This is often a convenient route, since the logarithmic term in equation (14) does not contain
information about the steady-state distribution itself.

6
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Note that for equations (13) and (14) to be well-defined, transitions between potential states
αi must be individually reversible, i.e. Ki j > 0 if Kji > 0, while in general Ki j �= Kji. If the
marginal dynamics for the potential state α satisfy the detailed balance condition [9, 10], i.e. if
a global potential function Fi = F(αi) can be defined such that Ki j/Kji ∝ exp(−(Fi − F j)) for
all pairs {i, j}, the second term in equation (14) vanishes at steady-state, although the first term
remains generally positive. This global potential construction is always possible for N = 2 and,
more generally, when the state-space is tree-like, i.e. when it features no closed circuits [9].

2.2. Fluctuating potentials as a continuous Markov process

The formulation above can be straightforwardly extended to continuousα dynamics by taking
N →∞ together with a suitable continuum limit in α-space, whereby Pi(x, t) → P(x,α, t)dα
and Ptot

i (t) → Ptot(α, t)dα. In this case, equation (1) thus generalizes to

P(α(t +Δt) = α′|α(t) = α) = G(α→ α′;Δt), (17)

where G denotes the propagator (Green’s function) for the chosen dynamics. The associated
marginal Fokker–Planck equation, which corresponds to the continuum limit of equation (15),
reads

∂tP
tot(α, t) = LPtot(α, t) (18)

with L the linear Fokker–Planck operator [57]. For the case of a fluctuating potential with
control parameter α(t) described by Brownian motion with diffusion coefficient Dα (which is
independent of α) in a potential V(α), we have for instance

LPtot(α, t) = Dα∂
2
αPtot(α, t) + ∂α(Ptot(α, t)∂αV(α)). (19)

Further, in line with equation (4), the probability current for the particle position satisfies

J(x,α, t) = −(∂xV(x;α))P(x,α, t) − D∂xP(x,α, t), (20)

while the probability current in α-space, denoted J (x,α, t), reads

J (x,α, t) = −(∂αV(α))P(x,α, t) − Dα∂αP(x,α, t). (21)

The full Fokker–Planck equation can thus be written as

∂tP(x,α, t) = −∂xJ(x,α, t) − ∂αJ (x,α, t). (22)

The calculation of the entropy flow starts once again from the expression for the
Gibbs–Shannon entropy,

S(t) = −
∫∫

dx dα P(x,α, t) log

(
P(x,α, t)

P̄

)
, (23)

which combines with the now two-dimensional Fokker–Planck equation to give, for the
particular case of equation (19),

Ṡi(t) =
∫

dα dx
1

P(x,α, t)

[
J2(x,α, t)

D
+

J 2(x,α, t)
Dα

]
(24a)

Ṡe(t) =
∫

dα

[∫
dx

J(x,α, t)∂xV(x;α)
D

]
+

1
Dα

∫
dα J tot(α, t)∂αV(α), (24b)

7
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where we have introduced the marginal current J tot (α, t) =
∫

dx J (x,α, t).

3. Brownian motion in an intermittent harmonic potential

Armed with the general expressions for the entropy production in drift–diffusion processes
with fluctuating potentials, we now study a number of specific examples. For the rest of this
study, we focus on the case of a harmonic potential V(x;α(t)) = α(t)x2/2, where the fluctuating
parameterα(t) controls the potential stiffness. The simplest discrete process that the stiffness of
the harmonic potential can follow is a two-state Markov process, also known as dichotomous
noise or telegraph process [59].

As a preliminary example, we study the case of a fully intermittent harmonic potential [30].
We suppose that α(t) ∈ {0,α0} switches between its two states with symmetric rate k. The
two states are characterized as follows: (i) when α(t) = 0, the particle diffuses on the real line
and we say that the system is in an off state, (ii) when α(t) = α0 > 0, the harmonic confining
potential is present and the system is said to be in its on state. Clearly, in its off state the particle
will be freely diffusing, while in the on state the confining potential leads to a forcing of the
motion of the particle toward the center of the potential. Effectively, this system corresponds
to the simplest single-particle system with a non-instantaneous resetting mechanism.

We denote by Poff(x, t) and Pon(x, t) the joint probability density of finding a particle at
position x in the off and on state, respectively, at time t. The kinetic equations for this process
read

∂tPoff(x, t) = −∂x [Joff(x, t)] + kPon(x, t) − kPoff(x, t) (25a)

∂tPon(x, t) = −∂x [Jon(x, t)] + kPoff(x, t) − kPon(x, t) (25b)

with

Joff(x, t) = −D∂xPoff(x, t), (26a)

Jon(x, t) = −D∂xPon(x, t) − α0xPon(x, t). (26b)

The stationary probabilities exist provided that α0 > 0 [60]. While it is relatively easy to
obtain these stationary probabilities in Fourier space, deriving a closed-form analytic expres-
sion for the probability distribution in real space is highly non-trivial [30, 61, 62] (see also
appendix A). In what follows, we interestingly show that such an analytic form is not required
for the calculation of the steady-state entropy production.

Indeed, to calculate the entropy production for this system, we will evaluate the entropy
flow. Starting from equation (14), it is clear that the second term is zero as by construction
Kon,off = Koff,on = k. For our choice of potentials, the first term reduces to

Ṡe(t) =
α0

D

∫
dx [xJon(x, t)] . (27)

At steady-state, the probability currents satisfy the flux balance equation
∂xJon(x) = −∂xJoff(x). Integrating the right-hand side of equation (27) by parts and
substituting one current for the other, we obtain

lim
t→∞

Ṡi(t) = lim
t→∞

α0

∫
dx

[
x2

2
∂2

x Poff(x, t)

]
. (28)

8
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Figure 2. Steady-state entropy production of a Brownian particle in an inter-
mittent quadratic potential. (a) Stationary distribution P(x) at different values of
α0 ∈ [10−2, 102] with k = D = 1 fixed. We show agreement between the distributions
measured numerically from single particle trajectories (marked by symbols) and the
result (A.7) which we have integrated numerically (dashed lines). We plot in black
the analytic solutions for the limit α0 � k as in equation (A.9) and α0  k as in
equation (A.10). (b) We confirm our analytic result (29) by evaluating (27) numerically
from our stationary distributions for three sets of values for k, D.

Finally, integrating by parts twice and solving equation (15) at steady-state to obtain
Ptot

on,∞ = Ptot
off,∞ = 1/2, leaves us with the simple expression

lim
t→∞

Ṡi(t) =
α0

2
, (29)

indicating that the steady-state entropy production in this setup is independent of both the
switching rate k and the diffusion coefficient D. Here and in the following, we drop boundary
terms whenever integration by parts is performed. This procedure relies on a sufficiently fast
decay of the relevant probability densities as x →±∞ and, more precisely, on the finiteness
of the second moment of Pi(x), which is a reasonable assumption for all processes considered
herein.

As shown in figure 2, we confirm numerically this result through: (1) the numerical inte-
gration of equation (27) using the stationary current derived from (25) (see appendix A and
[30, 62]) and (2) the analysis of single particle trajectories from the simulated underlying
microscopic process governed by equation (2) (see appendix B for further numerical details).
Strikingly, while the process is dynamically equivalent in the limit k →∞ to an equilibrium
OU process with reduced potential stiffness α0/2 [63], we observe here a finite and strictly
positive steady-state rate of entropy production. Similarly, entropy production remains finite
and positive for free RnT particles, whose motion is effectively diffusive in the limit of infinite
tumbling rate or large times [3, 19]. This is sometimes referred to as an entropic anomaly [64,
65].

Note that the independence of the steady-state entropy production vis-à-vis the switching
rate k and the diffusion coefficient D is specific to our choice of potential and can be derived
from physical arguments. Namely, the first law of thermodynamics at steady-state,

0 =

∫
dx [V(x;α0)∂tPon(x) + V(x; 0)∂tPoff(x)] = Ẇ − Q̇, (30)

imposes the rate of heat dissipation, Q̇, to be equal to the work done per unit time by the
potential on the particle, Ẇ. Clearly, work is only being done in the on state as the potential
disappears in the off state. In turn, the average work done equals the change in average potential
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Figure 3. Fluctuating potentials as a general two-state OU Markov process. The inequal-
ity (32) is the condition for the existence of a stationary solution to the Fokker–Planck
equation, and thus for the steady-state entropy production to be well-defined.

energy U = 〈α0x2/2〉 before the next transition to the off state. In the off state, the particle
motion is purely diffusive and the variance of the position probability density grows linearly,
i.e. ∂t〈x2〉 = 2D. Thus, the average work done by the potential during a on phase of typical
duration k−1 is given by

〈W〉 = Dα0

k
. (31)

Given that the average duration of an on–off cycle is by construction 2/k, the average
rate of heat dissipation is 〈Q̇〉 = k〈W〉/2 = Dα0/2. Finally, the particle self-diffusion coef-
ficient being proportional to the temperature by Einstein’s relation, we write in our units that
Ṡi = 〈Q̇〉/D and finally recover Ṡi = α0/2, which we confirm to be independent of k and D.

Importantly, this argument relies on the variance 〈x2〉 growing linearly with time (without
bounds) in the off state, an assumption that breaks down as soon as the off state of the potential
has a finite stiffnessα1, in which case the variance of the particle position in the off state instead
satisfies ∂t〈x2〉 = 2D(1 − α1〈x2〉/D). We show how this leads to an explicit k dependence of
the entropy production in section 4.2.2. Finally, to highlight the importance of the functional
form of the potential, we repeat this procedure for an intermittent quartic potential and argue
that the steady-state entropy production can not be independent of k or D in Appendix C.

4. General two-state OU Markov process

We now broaden our focus and study the case of a generalized two-state OU Markov process,
of which the preliminary model introduced in the previous section is a limiting case. Here,
we consider a system with two states denoted A and B. In state A, the particle diffuses in a
harmonic potential, VA(x) = αAx2/2, with diffusion coefficient DA. In state B, the restoring
force comes from a second potential, VB(x) = αBx2/2, and the particle self-diffusion is set by
DB. As shown in figure 3, the particle switches from state A to B with rate kBA and returns with
rate kAB.

4.1. Analytic expression for the entropy production

In this general case, one needs to carefully chose the potential strengths and switching rates.
Indeed, the steady-state probabilities only exist for this system when the following inequality
is satisfied [60]:

αAkAB + αBkBA

kAB + kBA
= 〈α〉 > 0 (32)

10
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where we have defined 〈α〉 =
∑

iαiPtot
i,∞, where Ptot

i,∞ are the solutions to equation (15) in
steady-state. It is easily interpreted as the sum of the two values for the stiffness α weighted
by the fraction of time spent in each state. Namely, while the independent confining poten-
tial strengths do not need to be strictly positive, we require the effective potential strength (as
time-averaged over a full A → B → A cycle) to be positive.

Granted that condition (32) is met, we start from equation (14) and follow the same
procedure as above. We thus argue that the steady-state entropy flow reads

lim
t→∞

Ṡe(t) =
αA

DA

∫
dx [xJA(x)] +

αB

DB

∫
dx [xJB(x)] . (33)

Importantly, we note that the switching contribution to the entropy production vanishes in the
case of a two-state process as detailed balance holds. Indeed, the switching contribution is
non-zero when detailed balance is broken which requires at least three states.

We then substitute in the form of the currents from the Fokker–Planck equations for the
process, given in equation (4), and write the internal entropy production as

lim
t→∞

Ṡi(t) = −〈α〉+ α2
A

DA

∫
dx

[
x2PA(x)

]
+

α2
B

DB

∫
dx

[
x2PB(x)

]
, (34)

where we recognize that the two integrals are proportional to the variances of the steady-state
probability distributions conditioned on the potential being in either of the two states A and B.

We introduce the conditional variance

σ2
i (t) =

∫
dx x2Pi(x, t)∫
dx Pi(x, t)

(35)

and define

Ξi(t) =
∫

dx x2Pi(x, t) = σ2
i (t)Ptot

i (t) (36)

for i ∈ {A, B}, where Ptot
i (t) =

∫
dx Pi(x, t) is the marginal probability of the potential having

stiffness αi independently of the position x of the trapped particle.
First, note that

∂tΞi(t) =
∫

dx
[
x2∂tPi(x, t)

]
(37)

and so after taking the second moment of the Fokker–Planck equation (3), we obtain

∂tΞA(t) = 2DAPA(t) − (2αA + kBA)ΞA(t) + kABΞB(t) (38a)

∂tΞB(t) = 2DBPB(t) − (2αB + kAB)ΞB(t) + kBAΞA(t). (38b)

We can now solve equations (38a) and (38b) at steady-state to derive explicit expressions for
ΞA(t) and ΞB(t) as t →∞:

lim
t→∞

ΞA(t) =
kAB

kAB + kBA

[
(2αB + kAB)DA + kBADB

2αAαB + αAkAB + αBkBA

]
, (39a)

lim
t→∞

ΞB(t) =
kBA

kAB + kBA

[
kABDA + (2αA + kBA)DB

2αAαB + αAkAB + αBkBA

]
. (39b)
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Figure 4. Steady-state entropy production rate for a Brownian particle in an intermittent
quadratic potential with asymmetric switching rates. (a) Stationary distribution P(x) for
the particle position measured numerically from single particle trajectories for varying
switching rates koff ∈ {10−2, 102}with kon = D = α0 = 1 fixed. (b) Entropy production
rate measured by integrating (34) numerically (symbols) showing good agreement with
our analytic result, (41), for fixed kon = D = 1.

Substituting (39a) and (39b) into (34), we obtain a closed-form exact expression for the entropy
production in a general two-state OU Markov process, which reads

lim
t→∞

Ṡi(t) =− αAkAB + αBkBA

kAB + kBA

+
α2

A

DA

[
kAB

kAB + kBA

] [
(2αB + kAB)DA + kBADB

2αAαB + αAkAB + αBkBA

]
+

α2
B

DB

[
kBA

kAB + kBA

] [
kABDA + (2αA + kBA)DB

2αAαB + αAkAB + αBkBA

]
(40)

where the first term is equal to the opposite of the mean stiffness 〈α〉, as defined in
equation (32).

4.2. Some models of interest

We now apply this result to a number of important limiting cases of the generalized two-state
OU model.

4.2.1. Intermittent harmonic potential with asymmetric switching rates. First we return to the
preliminary example, in which we stipulated that the diffusion was independent of the state,
DA = DB = D, and we let αA = 0 and αB = α0. Here, we consider more generally the case
of distinct switching rates: kon to switch from state A to state B and koff from state B to A. For
these parameters, equation (40) reduces to

lim
t→∞

Ṡi(t) = α0
koff

kon + koff
= α0 − 〈α〉. (41)

We conclude that in this case, the entropy production explicitly depends on the switching
rates kon and koff . Note that we naturally recover the result from equation (29) when sym-
metrizing the switching rates and setting kon = koff . We study the system numerically and plot
the stationary probabilities and entropy production rate in figure 4. We note in particular that
the entropy production rate can be written in terms of the potential strength α0 and ratio of
switching rates koff/kon, justifying our choice of parameters.
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Figure 5. Steady-state entropy production rate for a Brownian particle in a harmonic
potential switching between two non-zero stiffnesses with rate k. (a) Stationary distribu-
tions for the process with αB = 0.1 and αA = D = 1 for switching rates k ∈ {0.1, 10}.
(b) Entropy production rate evaluated from the numerical integration of (34) using the
stationary distributions obtained from single particle trajectories (symbols). We show a
perfect quantitative agreement with our exact analytical result (42) (solid line) for a wide
range of switching rates. We also show the entropy production rate in the limit k →∞
in each case from (44) (dashed line).

4.2.2. Non-disappearing harmonic potential. Next, we consider the case of a non-
disappearing harmonic potential. Namely, we consider that kAB = kBA = k and DA = DB = D,
while letting αA > αB > 0. Here, we obtain

lim
t→∞

Ṡi(t) = −αA + αB

2
+

(αB + k)α2
A + (αA + k)α2

B

2αAαB + k(αA + αB)
=

k(αA − αB)2

4αAαB + 2k(αA + αB)
, (42)

which displays an explicit dependence on the switching rate k.
We also conclude on the scaling of the entropy production when the switching rate is either

much smaller or much larger than the two values for the stiffness. In particular, we observe a
crossover from a small k regime characterized by a linear k dependence

lim
t→∞

Ṡi(t) �
(αA − αB)2

4αAαB
k for k  αA,B (43)

that extends from k = 0 up to a cross-over rate k∗ = 2αAαB/(αA + αB), to a large k regime that
is asymptotically independent of k,

lim
k→∞

lim
t→∞

Ṡi(t) =
(αA − αB)2

2(αA + αB)
. (44)

We conclude that the k-dependent regime vanishes to a single point in the limit where αB → 0
for fixedαA as shown in figure 5. This limit is consistent with a vanishing intermittent harmonic
potential and we confirm here that we recover the result of equation (29).

4.2.3. Switching diffusion in harmonic potential. Suppose now that the switching is symmetric
with rate kAB = kBA = k and the harmonic potential stiffness αA = αB = α is the same in each
state, but the diffusion coefficient switches between two values, DA and DB. We then vary DA

and DB to see how the entropy production depends on the ratio of the diffusion coefficients.
Starting from (40), we eventually obtain
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Figure 6. Steady-state entropy production for a Brownian particle switching between
two diffusion coefficients in a constant harmonic potential. (a) Stationary distributions
for the process with DA = k = 1, α = 10 and varying DB ∈ [1, 100]. We show in black
the Gaussian distribution expected in the case where DA = DB. (b) Entropy production
rate as a function of the diffusion coefficient DB obtained by integrating numerically (34)
using the single particle trajectories (symbols), in perfect agreement with our analytic
result (45) (solid line).

lim
t→∞

Ṡi(t) =
αk

4(α+ k)

[(
DB

DA
+

DA

DB

)
− 2

]
=

αk(DA − DB)2

4DADB(α+ k)
. (45)

The entropy production is clearly non-negative and vanishes at DA = DB, which corresponds to
the recovery of a standard (equilibrium) OU process with stiffness α and diffusion coefficient
D (see figure 6 for a comparison with numerical results).

4.2.4. Effective resetting with harmonic potential. Evaluating the entropy production for sys-
tems with (instantaneous) resetting is a problem that has seen much attention [54, 55]. The
irreversible nature of the stochastic resetting process is a good indication that the entropy pro-
duction is infinite: it completely breaks time-reversal symmetry. For this reason, previous work
addressing the thermodynamics of resetting has made use of alternative definitions for the
entropy production [54, 55], whose connection with time-reversal symmetry breaking in the
spirit of [11] is unclear.

The framework we introduce here allows us to study models of effective resetting, where a
particle diffuses in a fluctuating harmonic potential. Namely, near-instantaneous resetting with
a refractory period [66] of typical duration 1/koff can be modeled with an intermittent potential
of infinite stiffness α0 →∞. Note that in the limit where koff →∞ while keeping koff  α0,
this refractory period vanishes. From the results of section 4.2.1, it is clear that an infinitely
stiff confining potential implies infinite steady-state entropy production, but more generally,
we are here able to quantify entropy production in systems approaching instantaneous resetting
but with finite confining potentials and show that the entropy production diverges linearly with
the potential stiffness.

5. General N-state OU Markov process

5.1. General framework

We generalize the results above to the case where the stiffness α of the confining harmonic
potential and the diffusion coefficient D can switch stochastically between N distinct pairs of
values (αi, Di) with i = 1, 2, . . . , N following a general Markov jump process with transition
rate matrix K. As noted earlier, the matrix elements Ki j represent the probability per unit time
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that a harmonic potential with stiffness α j switches to stiffness αi; note that in general, while
Ki j > 0 whenever Kji > 0 to enforce local reversibility, these transition rates need not satisfy
global detailed balance. The diagonal elements of K are fixed by imposing

∑
i Ki j = 0 for all

j, corresponding to the requirement that the total probability be conserved.
Similarly to equation (36), we define

Ξi(t) =
∫

dx x2Pi(x, t) = σ2
i (t)Ptot

i (t) (46)

for i = 1, 2, . . . , N, with Ptot
i (t) =

∫
dx Pi(x, t) the marginal probability of the potential having

stiffness αi independently of the particle position. For our choice of potential, the entropy flow
is given by equation (14):

Ṡe(t) =
∑

i

αiP
tot
i (t) −

∑
i

α2
i

Di
Ξi(t) −

1
2

∑
i �= j

(
Ki jP

tot
j (t) − KjiP

tot
i (t)

)
log

(
Ki j

K ji

)
. (47)

Note that in the present case, the contribution from the pure switching component of the
process does not generally vanish for N � 3, since the switching rates Ki j do not generically
need to satisfy the detailed balance condition. Based on the Fokker–Planck equation (3), we
obtain the following system of kinetic equations

∂tΞi(t) = 2DiP
tot
i (t) − 2αiΞi(t) +

∑
j

Ki jΞ j(t). (48)

At steady-state, computing the entropy production rate, limt→∞ Ṡi(t) = −limt→∞ Ṡe(t), for
this system only depends on our ability to compute the quantities Ξi at steady-state. From
equation (48), these steady-state quantities can be obtained by solving the linear system

2DiP
tot
i,∞ +

∑
j

(Ki j − 2αiδi j)Ξ j = 0 (49)

which involves the steady-state marginal probabilities Ptot
i,∞ of the Markov switch process;

these correspond to the unique eigenvector with eigenvalue 0 of the transition rate matrix K
(assuming that the corresponding graph has a single connected component), rather than the full
space-dependent probabilities Pi(x, t), which are typically hard to compute [30, 62].

5.2. Simple example: N-state ring with homogeneous right- and left-hopping rates

The case of a ring with N states (see figure 7 for N = 3) is the simplest setup for which the
switching contribution to the entropy flow is non-trivial. Let Ki,i+1 = kl and Ki,i−1 = kr with
periodic boundary conditions and assume that in state i, the particle has a diffusion constant,
Di. By rotational symmetry of this cyclic configuration, we have that the steady-state marginal
probabilities satisfy Ptot

i,∞ = 1/N for all i. We thus also have that the mean stiffness is defined
as 〈α〉 = (α1 + α2 + · · ·+ αN)/N. The contribution to the entropy flow from the switching
part of the process can easily be calculated and reads

1
2

∑
i, j�=i

(
Ki jP

tot
j,∞ − KjiP

tot
i,∞

)
log

(
Ki j

K ji

)
= (kl − kr) log

(
kl

kr

)
(50)
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Figure 7. Steady-state entropy production for a Brownian particle in N = 3 harmonic
potentials of varying stiffness. Schematic for (a) the different potentials in a typical three
state system and (b) the discrete Markov jump process that controls the stiffness of the
harmonic potential. (c) Entropy production rates for the process, consisting of two con-
tributions: the switching contribution, stemming purely from the switching dynamics,
vanishes when the jump process satisfies detailed balance (here, kr = kl); the drift con-
tribution, accounting for steady-state currents in position space, is generically positive
in the presence of stiffness fluctuations. For the simulations, we set α0 = 0.5, α1 =
2,α2 = 5 and D = kl = 1.

which vanishes for kl = kr, as expected. We can now plug this result into equation (47) to obtain
an expression for the entropy production as a function of the stiffnesses αi and the switching
rates,

lim
t→∞

Ṡi(t) = lim
t→∞

− Ṡe(t) = (kr − kl) log
kr

kl
+

N∑
i=1

αi

(
αiΞi

Di
− 1

N

)
, (51)

where the steady-state quantities Ξi are solutions to the following linear equation

Ξ = − 2
N
Σ−1 ·D (52)

with D the vector of diffusivities and where the matrix Σ is a tri-diagonal matrix defined in the
case N = 3 as

Σ =

⎛⎝−kr − kl − 2α1 kl kr

kr −kr − kl − 2α2 kl

kl kr −kr − kl − 2α3

⎞⎠ . (53)

From equation (51), we note again that the entropy production in this general N-state Markov
jump process is formed of two contributions: (i) the first term, which we call the switching
contribution, which vanishes when the jump process satisfies detailed balance (here, kr = kl).
Physically, this contribution captures the rate of heat dissipation into the bath driving the fluctu-
ations of the potential; (ii) the second term, which we call the drift contribution, is proportional
to the heat dissipated into the bath driving the fluctuations of the particle position. Since the
potential fluctuations are independent of the particle position, both the total entropy production
and the switching contribution are individually non-negative, while the drift contribution can
a priori take on positive or negative values.

We explore the case N = 3 in figure 7 finding the dependence on the switching rates kr and
kl of the two contributions to the entropy production. In the special case of equal stiffnesses and
diffusivities (αi, Di) = (α, D) for i = {1, 2, 3}, we obtain Ξi = D/(3α) and the drift contribu-
tion in equation (51) vanishes. Despite this, we may still observe a non-zero rate of entropy
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production accounting for the heat being dissipated into the bath driving the fluctuations in the
potential, i.e. due to the control of the switching process. Indeed, a non-zero rate of entropy
production is expected when detailed balance is not satisfied in the switching mechanism which
we recover in equation (51) when kr �= kl as required. In contrast, figure 7 shows the evolution
of the entropy production as a function of kr/kl for a more general case where the stiffnesses
αi are not equal.

6. Continuous state Markov process for the potential stiffness

The final generalization consists in allowing the potential stiffness α to vary continuously
according to a continuous stochastic process. While we derived general results about the inter-
nal entropy production and the entropy flow for continuous processes in section 2.2, here we
focus on the particular example of a particle diffusing in a confining harmonic potential whose
stiffness obeys an OU process.

6.1. OU process governing the potential stiffness

In this model, the position of the particle x obeys the following overdamped Langevin equation

ẋ(t) = −∂xV(x;α(t)) +
√

2D η(t) (54)

with a confining potential V(x; α) = αx2/2 whose stiffness α(t) is governed by the following
mean-reverting process

α̇(t) = −∂αV(α) +
√

2Dα ξ(t) (55)

where Dα is the diffusion constant for the stiffness which is independent of α and η(t) and ξ(t)
are two zero mean, unit variance Gaussian white noises. Here, we thus consider the special
case where the stiffness confining potential is defined as

V(α) =
1
2
μ(α− α0)2 (56)

where α0 > 0 is required for the steady-state to be well-defined.
As before, Ptot(α, t) =

∫
dxP(x,α, t) denotes the marginal probability density for the poten-

tial having a particular stiffness α independently of the position x of the trapped particle.
Starting from equation (24), the entropy flow for this model can be written as

Ṡe(t) =
∫

dα

[
αPtot(α, t) − α2

D
Ξ(α, t)

]
+

1
Dα

∫
dα J tot(α, t)V′(α) (57)

where J tot is the probability current in stiffness space and the marginal variances are defined
as Ξ(α, t) =

∫
dx x2P(x,α, t).

In this continuum limit, the marginal probability density is determined by the
Fokker–Planck operator (19). Therefore, the steady-state marginal probability density Ptot(α)
is Gaussian and is given by

Ptot(α) =
√

μ

2πDα
exp

(
−μ(α− α0)2

2Dα

)
(58)

with J tot(α) = 0 since this is an equilibrium process and the average stiffness reduces to
〈α〉 = α0. We are left to calculate the second term in equation (57) to finally obtain the entropy
production.
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The Fokker–Planck equation for P(x,α, t) is written as

∂tP = D∂2
x P + α∂x [xP] + Dα∂

2
αP + μ∂α [(α− α0)P] (59)

where we have dropped the functional dependencies for the sake of simplicity. From here, we
can follow a similar procedure to that used to obtain equation (38) and find that the marginal
variance Ξ(α, t) is governed by the following kinetic equation

∂tΞ(α, t) = 2DPtot(α, t) − 2αΞ(α, t) + ∂α [Dα∂αΞ(α, t) + μ(α− α0)Ξ(α, t)] . (60)

The marginal variances satisfy at steady-state the following linear equation

(L− 2α)Ξ(α) + 2DPtot(α) = 0. (61)

Integrating this last equation with respect to α leads to 〈αx2〉 = D where 〈·〉 represents the
average with respect to the steady-state probability distribution, limt→∞ P(x,α, t). This itself
is a remarkable result, indicating that the effect on positional fluctuations, as captured by the
variance 〈x2〉, associated with changes inα0, Dα orμ is exactly canceled when the displacement
is rescaled by the fluctuating stiffness α(t), such that the scaled variance 〈αx2〉 is independent
of the stiffness dynamics.

We then multiply (60) by α before again integrating over α to obtain∫
dα

[
α2

D
Ξ(α)

]
= 〈α〉 − 1

2D

∫
dα [Dα∂αΞ(α) + μ(α− α0)Ξ(α)] (62)

with 〈α〉 = α0. Combining equation (62) with (57), integrating by parts once assuming a suffi-
ciently fast decay of P(x,α) as x,α→±∞ and using 〈αx2〉 = D, we conclude that the entropy
production rate at steady-state can be expressed as

lim
t→∞

Ṡi = − μ

2D
〈(α− α0)x2〉 = μα0

2D

(
〈x2〉 − D

α0

)
, (63)

which is the simplest exact form for the entropy production that we can obtain here and the
main result of this section. Note that the limit Dα → 0 represents an equilibrium limit for the
system. We argue that in this case the variance of the particle position is given by 〈x2〉 = D/α0

and thus one would observe no entropy production, as expected for an equilibrium process. We
have thus expressed the entropy production in this system through the difference between the
particle positional variances in the fully non-equilibrium process and its equilibrium limit. A
closed-form solution for the entropy production in this system relies on our ability to calculate
the variance of the particle position; while this can easily be achieved numerically (see figure 8),
to the best of our knowledge, it is not possible to write an analytical expression for it in general
and writing down a solution to equation (59) remains an interesting open problem.

As shown in figure 8, we observe that the steady-state entropy production rate decays with
increasing diffusion coefficient D. For low values of D, while Brownian motion becomes pro-
gressively weaker, fluctuations in the particle position (as captured by 〈x2〉) remain significant
due to the existence of periods of transiently negative potential stiffnesses. As a consequence,
we expect the bracketed terms in equation (63) to remain finite as D approaches 0, leading to
the observed increase of the entropy production in this limit. On the other hand, the steady-
state entropy production rate converges to a finite value and becomes independent of D at large
enough diffusivities. When α0, D � μ, Dα, we effectively obtain a separation of timescales
between the dynamics in x-space andα-space. Assumingα2

0 � Dα/μ, the variance of the parti-
cle position is then well-approximated by the average over positiveα of the variance of particle

18



J. Phys. A: Math. Theor. 55 (2022) 274004 H Alston et al

Figure 8. Steady-state entropy production for a Brownian particle in a harmonic poten-
tial with continuously varying stiffness. (a) Steady-state entropy production rate as a
function of the particle self-diffusivity D, for μ = Dα = 1 and different values of α0.
The entropy production rate becomes independent of the positional diffusion coefficient
for large enough values of D and remains finite and non-negative at low values of D.
(b) Steady-state entropy production rate increases with Dα. We find that Ṡi ∼ Dα/α

2
0.

Here, we set D = μ = 1 and vary Dα and α0.

in a fixed potential with stiffness α, 〈x2〉α = D/α, weighted by the probability to observe such
a potential stiffness P(α, t). Altogether, we thus expect the term in the brackets in equation (63)
to scale like D and the D dependence to finally scale out of the steady-state entropy production
rate. Finally, we confirm our intuition that the entropy production rate should increase with
increasing values of diffusivity in α-space and show that Ṡi ∼ Dβ

α, with β ≈ 1.
Furthermore, we can verify that the entropy production (63) is non-negative by considering

〈(α− α0)2x2〉 = 〈α2x2〉 − 2α0〈αx2〉+ α2
0〈x2〉 � 0, (64)

where the equality is only saturated in the deterministic limit, i.e. for D = Dα = 0. Substituting
once again 〈αx2〉 = D in the above equation, and using

〈α2x2〉 = Dα0 −
Dμ

2
+

μα0

2
〈x2〉, (65)

which is obtained by multiplying the Fokker–Planck equation (59) by αx2 and integrating over
both x and α, we eventually find

〈(α− α0)2x2〉 =
(
α0 +

μ

2

) (
α0〈x2〉 − D

)
(66)

and hence α0〈x2〉 � D, as required.

6.2. Fast stiffness dynamics

Finding an analytical expression for the entropy production rate of a diffusive particle in a
harmonic potential whose stiffness is governed by an OU process relies on our capacity to write
down the variance of the particle position. To make some headway along this line, we consider
the regime where the stiffness dynamics are much faster than the positional dynamics of the
particle. Here, we work perturbatively and introduce a small parameter, ε  1, characterizing
the separation in timescales between the two processes, as is common practice in the literature
for fast-slow dynamical systems [63].
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Figure 9. Steady-state entropy production as a function of the separation of timescale,
ε. We fix D = Dα = μ = 1 and α0 = 10, then vary ε which represents the difference in
the timescales of the two processes, introduced in section 6.2. We show good agreement
between numerical simulations (symbols) and analytic result (78) (solid lines). We also
show the analytic results for the entropy production rate as ε→ 0 (dotted lines) as given
by (79).

At the level of the coupled Langevin equations, this re-scaling is written as

ẋ(t) = −αx(t) +
√

2D ηx(t) (67a)

εα̇(t) = −μ̃(α(t) − α0) +
√

2D̃αε ηα(t) (67b)

where we have taken care to re-scale the noise appropriately under the separation of timescales.
The Fokker–Planck equation for the joint probability density now reads

∂tP(x,α, t) = D∂2
x P(x,α, t) + α∂x [xP(x,α, t)] +

D̃α

ε
∂2
αP(x,α, t) +

μ̃

ε
∂α [(α− α0)P(x,α, t)] ,

(68)

corresponding to the rescaling Dα → D̃α/ε, μ→ μ̃/ε, which preserves the variance of the
stiffness.

In the limit ε→ 0, it is known that P(x,α) → P(x; α0)Ptot(α) where P(x; α0) is the station-
ary distribution in the case where α ≡ α0 and Ptot(α) is the stationary marginal distribution
for α as given in equation (58) [63]. For small but finite ε, it is useful to write the stationary
probability distribution perturbatively around this limit, namely

P(x,α) = P0(x;α0)Ptot(α) + εP1(x,α), (69)

where P1(x,α) is some function of leading order O(ε0) into which all higher order corrections
have also been absorbed [63]. Note that P1(x,α) should not be thought of as a probability
distribution as it does not satisfy the normalization condition, rather∫

dx
∫

dα P1(x,α) = 0. (70)

We introduce the notation

〈 · 〉1 =

∫
dx

∫
dα (·) P1(x,α) (71)
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whence

〈x2〉 − D
α0

= ε〈x2〉1 (72)

which allows us to express the variance of the position in terms of the variance in the uncoupled
problem where α ≡ α0 and a contribution from the first-order term in ε. From equation (63),
it is clear that to compute the steady-state entropy production rate, we need to find an analytic
expression for the quantity 〈x2〉1. Multiplying the Fokker–Planck equation (68) by x2(α− α0)2

and integrating with respect to both x and α at steady-state leads after some straightforward
algebra to the following moments relation

D〈(α− α0)2〉 − 〈α(α− α0)2x2〉+ D̃α

ε
〈x2〉 − μ̃

ε
〈x2(α− α0)2〉 = 0. (73)

While we have already expressed the variance of the particle position in terms of our
perturbative expansion (69), similarly, we write the other moments as

〈(α− α0)2〉 = ε〈(α− α0)2〉1 +
D̃α

μ̃
(74a)

〈(α− α0)2x2〉 = ε〈(α− α0)2x2〉1 +
DD̃α

α0μ̃
(74b)

〈α(α− α0)2x2〉 = ε〈α(α− α0)2x2〉1 +
DD̃α

μ̃
. (74c)

Substituting (72) and (74) in (73), we obtain

〈(α− α0)2x2〉1 =
D̃α

μ̃
〈x2〉1 −

ε

μ̃
〈α(α− α0)2x2〉1. (75)

Furthermore, taking care to rescale μ→ μ̃/ε, equation (66) can be rewritten as follows

〈(α− α0)2x2〉 =
(
α0 +

μ̃

2ε

)
α0ε〈x2〉1. (76)

Finally, we combine (74b), (75) and (76) to obtain a closed-form expression for 〈x2〉1 valid up
to order O(ε2),

〈x2〉1 =
DD̃α

α0μ̃

[
μ̃α0

2
+ ε

(
α2

0 −
D̃α

μ̃

)
+O(ε2)

]−1

. (77)

We conclude that the entropy production as given in equation (63) is therefore

lim
t→∞

Ṡi =
D̃α

α0μ̃

[
1 +

2ε
α0μ̃

(
α2

0 −
D̃α

μ̃

)
+O(ε2)

]−1

(78)

which we compare to the results of numerical simulations in figure 9. It follows that as we
saw for the cases of discrete stiffness, the entropy production remains finite in the limit of fast
stiffness dynamics, here ε→ 0. Namely, we obtain

lim
ε→0

lim
t→∞

Ṡi(t) =
D̃α

α0μ̃
, (79)

and conclude that it scales linearly with the variance of Ptot(α).
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7. Conclusion and discussion

In this work, we have established a general framework for calculating the steady-state entropy
production rate of diffusive single-particle systems in time-dependent, confining potentials
subject to Markovian stochastic fluctuations, including both discrete and continuous ‘state
spaces’ for the fluctuating potential. Our exploration has been conducted within the formal-
ism of [11], reviewed in [3]. After introducing our results for general Markovian processes, we
obtain analytical results for a variety of important cases. In particular, we focus on harmonic
confining potentials subject to fluctuations in the stiffness α.

As a first example, we study the diffusion of a particle in an intermittent harmonic potential
switching on and off with a symmetric rate k. In this case, we conclude that the entropy produc-
tion is independent of both the diffusivity D of the trapped passive particle and the switching
rate k. This remarkably simple result emerges naturally from the quadratic form of the confining
potential. Indeed, one expects the steady-state positional probability density, which determines
the steady-state probability current, to generically depend on both of these parameters, as we
show in the simple example of a quartic potential.

We then expanded this preliminary result to a general two-state OU process with Marko-
vian switching. Using this model, we discussed the entropy production in a realistic model of
stochastic resetting, a problem which has previously attracted the attention of several groups
[34, 54, 55]. Within our framework, traditional stochastic resetting is associated with infinite
entropy production on the basis of a complete breakdown of time reversal symmetry [34]. We
reconcile this observation with the finite entropy production calculated in [54, 55] by recog-
nizing that the measures of dissipation used in these latter works are not directly linked to
time-reversal symmetry. Thereupon, we further generalized our results on entropy production
to harmonic potentials with stiffnesses controlled by an N-state discrete Markov process. As a
direct application, we studied a simple example of a three-state process highlighting the emer-
gence of a non-trivial contribution to the entropy production due to currents in the stiffness
space.

Finally, we explored a model where the potential stiffness itself evolves in time according
to an OU process with diffusivity Dα and coupling μ, modeling, for instance, the diffusion of
a particle confined in an optical trap whose strength is fluctuating continuously in time due to
e.g. fluctuations in laser intensity. Strikingly, we give explicit analytical results for the entropy
production in the regime where the stiffness fluctuations are fast compared to the positional
dynamics of the particle.

Interestingly, we observed in some cases that the entropy production remains finite upon tak-
ing limits for which the dynamics of the trapped Brownian particle are indistinguishable from
those of an equilibrium model, reminiscent of the diffusive limit for RnT particles with diverg-
ing tumbling rate [3, 19]. This phenomenon, which is sometimes referred to as an entropic
anomaly [64, 65], is a common occurrence for systems with interacting fast and slow degrees of
freedom, which points to the non-trivial correspondence between dynamic and thermodynamic
features of non-equilibrium stochastic processes.

Altogether, this work forms a comprehensive study of the entropy production for single-
particle systems with fluctuating potentials, which provides the foundations of a non-
equilibrium thermodynamic theory of fluctuating potentials. While we have derived exact
results for the case where the potential is of quadratic form, the framework developed here
can extended to more complex confining potentials and will generally result in a hierarchy of
equations for the moments of the probability distribution. One is left to find an approximate
closure to this hierarchy to conclude on the entropy production rate. Nevertheless, many trap-
ping potentials are well-approximated by parabolic potentials, thus we believe that our results
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will prove very useful for calculating the entropy production due to potential fluctuations in
practice. Further, we focus here on diffusive motion in confining fluctuating potentials but our
framework itself can be generalized to a more general class of models like random acceleration
processes [43, 67–69] or active particles including RnT particles [19, 70–72], active Brownian
particles [7, 72, 73] and AOUPs [74–77], which will be the subject of future work. Finally, we
believe that our results provide a natural framework to study the stochastic thermodynamics of
colloidal systems in optical traps [29, 78, 79].
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Appendix A. Steady-state densities for Brownian motion in an intermittent
harmonic potential

In section 3, we calculate the entropy production for a particle diffusing in an intermittent
harmonic potential. Exact results are known for the stationary distributions for the specific
process. Therefore, our analytical result for the entropy production can be directly compared
to that obtained by directly integrating equations (13) and (14). For completeness, we rederive
here shortly the steady-state distributions following the derivations found in [30, 62].

To do so, we start from the Fokker–Planck equation (25) at steady-state which read

0 = D∂2
x Poff(x) + kPon(x) − kPoff(x) (A.1a)

0 = D∂2
x Pon(x) + α0∂x [xPon(x)] + kPoff(x) − kPon(x) (A.1b)

where we have dropped the time dependence in Pon(x) and Poff(x) to denote their station-
ary nature. To solve these coupled equations, it is easier to work in Fourier space. Using the
following convention for Fourier transforms,

P̂i(ν, t) =
∫ +∞

−∞
Pi(x, t)e−iνx dx, (A.2)

these equations read in Fourier-transformed space

0 = −Dν2P̂off(ν) + kP̂on(ν) − kP̂off(ν) (A.3a)

0 = −Dν2P̂on(ν) − α0ν∂ν P̂on(ν) + kP̂off(ν) − kP̂on(ν). (A.3b)
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Using equation (A.3a), we can express P̂off(ν) in terms of P̂on(ν) which allows us to write the
following single differential equation for P̂on(ν)

α0∂ν P̂on(ν) + Dν

[
1 +

k
Dν2 + k

]
P̂on(ν) = 0. (A.4)

The solution to equation (A.4) can easily be shown to read

P̂on(ν) =

[
k

2(k + Dν2)

] k
2α0

exp

[
−Dν2

2α0

]
(A.5)

where we have used the fact that P̂(0) = P̂on(0) + P̂off(0) by conservation of probability.
Finally, using equation (A.3a), we obtain the full steady-state distribution in ν-space as

P̂(ν) =
1
2

[
e−Dν2/2α0

(1 + Dν2/k)k/2α0
+

e−Dν2/2α0

(1 + Dν2/k)1+k/2α0

]
. (A.6)

While it is not possible to obtain a closed-form expression for the total steady-state distri-
bution in real space for general values of α0, D and k, one can invert this relation and write
P(x) as the following sum of convolution integrals

P(x) =
1
2

{∫ +∞

−∞
dy f2

(
y,

k
2α0

)
f1(x − y) +

∫ +∞

−∞
dy f2

(
y, 1 +

k
2α0

)
f1(x − y)

}
(A.7)

where

f1(x) = F−1
[
e−Dν2/2μ0

]
=

1√
2πD/α0

e−α0x2/2D (A.8a)

f2(x, β) = F−1
[
(1 + Dν2/k)β

]
=

√
π

Γ(β)

(
k
D
|x|
2

)β−1/2

K 1
2−β

(√
k
D
|x|

)
(A.8b)

with Kn(x) the modified Bessel function of the second kind.
The form of the steady-state distribution for the particle position emerges from a competition

between two timescales: (i) k−1 the timescale set by the switching rate of the intermittent con-
fining potential and (ii) α−1

0 which sets the particle position correlation time, or equivalently,
the timescale at which the particle position converges back to the center of the confining poten-
tial. As shown in reference [30], it is possible to obtain exact expressions for the steady-state
distribution in some asymptotic regimes. In particular, in the limit where the switching rate is
very small compared to the confining potential strength, k  α0, the steady-state distribution
is given by

P(x) =
kα0

1
2

[
e−α0x2/2D

√
2πDα0

+

√
k/Dek/2α0

4
e−
√

k/D|x|Erfc

(√
k/D

2α0
−
√

α0

2D
|x|

)]
(A.9)

leading to a central Gaussian region followed by exponential tails. Conversely, in the limit of
a very fast switching rate k � α0, the steady-state distribution is given by

P(x) =
k�α0

e−α0x2/4D√
4πD/α0

(A.10)
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which is the same as that of an equilibrium OU process with a reduced potential strength α0/2.

Appendix B. Numerical analysis

As shown in equation (14), the entropy flow can easily be calculated if given the knowledge
of the stationary distribution for the process. However, analytic forms for these stationary dis-
tributions are generically difficult to obtain. In order to confirm our analytical results, we can
nonetheless resort to computing the entropy production numerically. To do so, we measure the
stationary distribution (or histogram of the particle positions) for each of our models directly
from simulated single particle trajectories over long times.

In all systems, the single particle trajectories are obtained by solving the associated
Langevin equation using a second-order stochastic Runge–Kutta method with a fixed time
step, dt = 10−5, for t ∈ [0, 104] [80–83]. For any given data set, we have used a fixed timestep;
we made sure to take a timestep small enough to resolve the smallest timescale in the pro-
cess (usually the switching dynamics), i.e. dt  1/kmax where kmax is the largest switching
rate considered in the process. When considering a discrete Markov process for the fluctuat-
ing potential, α(t) is updated by evaluating the transition probabilities based on the switching
rates and timestep. For the continuous Markov process, the stiffness itself follows a Langevin
equation, which we solve using a stochastic Runge–Kutta method as above [80–83].

Appendix C. Entropy production for intermittent quartic potential

We consider a simple modification of the preliminary example introduced in section 3 in
which we replace the intermittent quadratic potential by an intermittent quartic potential,
V(x; α(t)) = α(t)x4/4. The equation for the steady-state entropy production can be derived
using the same procedure. The corresponding equation to (29) is in this case

lim
t→∞

Ṡi(t) = lim
t→∞

α0

∫
dx

x4

4
∂2

x Poff(x, t) = lim
t→∞

3α0

∫
dx x2Poff(x, t) = 3α0Ξoff (C.1)

where Poff(x) is the steady-state joint probability density of finding an agent at position x in
the off state. It thus follows that the steady-state entropy production is independent of k and D
if and only if Ξoff is.

To show that this is not the case, suppose that Ξoff is independent of k. At steady-state, we
know that

0 = D∂2
x Poff(x) + kPon(x) − kPoff(x). (C.2)

Multiplying (C.2) by x2 and integrating over the spatial variable x, we find

Ξon = Ξoff −
2D
k
. (C.3)

If we fix D and α0, then, by our earlier assumption, Ξoff is a constant. However, this equation
tells us that there exists a range for the switching rate k, namely k < 2D/Ξoff , for which the
variance of the steady-state probability of the on state is negative. This is a contradiction. We
can use the same argument to show that Ξoff can not be independent of D.

Finally, we conclude that, in the case of an intermittent quartic potential, the entropy pro-
duction must depend on both k and D and the independence of equation (29) vis-à-vis these
two parameters is solely due to the quadratic nature of the confining potential. We argue that
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there is thus no reason for the entropy production to be independent of k and D with a more
general confining potential.

ORCID iDs

Henry Alston https://orcid.org/0000-0002-6636-6350
Luca Cocconi https://orcid.org/0000-0002-8551-1461
Thibault Bertrand https://orcid.org/0000-0001-9812-7904

References

[1] Peliti L and Pigolotti S 2021 Stochastic Thermodynamics: An Introduction (Princeton, NJ: Princeton
University Press)

[2] Seifert U 2012 Rep. Prog. Phys. 75 126001
[3] Cocconi L, Garcia-Millan R, Zhen Z, Buturca B and Pruessner G 2020 Entropy 22 1252
[4] Seifert U 2005 Phys. Rev. Lett. 95 040602
[5] Jarzynski C 2011 Annu. Rev. Condens. Matter Phys. 2 329–51
[6] Sevick E M, Prabhakar R, Williams S R and Searles D J 2008 Annu. Rev. Phys. Chem. 59 603–33
[7] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys.

88 045006
[8] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013

Rev. Mod. Phys. 85 1143–89
[9] Schnakenberg J 1976 Rev. Mod. Phys. 48 571–85

[10] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333–65
[11] Gaspard P 2004 J. Stat. Phys. 117 599–615
[12] Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79–86
[13] Roldán É, Neri I, Dörpinghaus M, Meyr H and Jülicher F 2015 Phys. Rev. Lett. 115 250602
[14] Seif A, Hafezi M and Jarzynski C 2021 Nat. Phys. 17 105–13
[15] Seifert U 2018 Physica A 504 176–91
[16] Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15–20
[17] Gardiner C W 1985 Handbook of Stochastic Methods (Berlin: Springer)
[18] Bothe M and Pruessner G 2021 Phys. Rev. E 103 062105
[19] Garcia-Millan R and Pruessner G 2021 J. Stat. Mech. 063203
[20] Alston H, Parry A O, Voituriez R and Bertrand T 2022 arXiv:2201.04091
[21] Bonazzi D et al 2018 Cell 174 143.e16–155
[22] Zhou K, Hennes M, Maier B, Gompper G and Sabass B 2021 arXiv:2106.06729
[23] Oriola D, Marin-Riera M, Anlas K, Gritti N, Matsumiya M, Aalderink G, Ebisuya M, Sharpe J and

Trivedi V 2021 arXiv:2012.01455
[24] Kim S, Pochitaloff M, Stooke-Vaughan G A and Campàs O 2021 Nat. Phys. 17 859–66
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