New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Dynamics of run-and-tumble particles in dense single-file systems

To cite this article: Thibault Bertrand et al 2018 New J. Phys. 20 113045

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 155.198.197.44 on 05/06/2019 at 13:13


https://doi.org/10.1088/1367-2630/aaef6f
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/756601772/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
2 September 2018

REVISED
29 October 2018

ACCEPTED FOR PUBLICATION
8 November 2018

PUBLISHED
30 November 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 20 (2018) 113045 https://doi.org/10.1088/1367-2630/aaef6f

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Dynamics of run-and-tumble particles in dense single-file systems

Thibault Bertrand'*®, Pierre Illien*, Olivier Bénichou’ and Raphaél Voituriez'”

! Laboratoire Jean Perrin, UMR 8237 CNRS, Sorbonne Université, F-75005 Paris, France

> EC2M, CNRS UMR?7083 Gulliver, ESPCI Paris, PSL Research University, F-75005 Paris, France

’ Laboratoire de Physique Théorique de la Matiéere Condensée, UMR 7600 CNRS, Sorbonne Université, F-75005 Paris, France
* Author to whom any correspondence should be addressed.

E-mail: thibault.bertrand@upmec.fr and voiturie@lptmc.jussieu.fr

Keywords: active matter, run-and-tumble motion, lattice models in statistical physics

Abstract

We study a minimal model of self-propelled particle in a crowded single-file environment. We extend
classical models of exclusion processes (previously analyzed for diffusive and driven tracer particles) to
the case where the tracer particle is a run-and-tumble particle (RTP), while all bath particles perform
symmetric random walks. In the limit of high density of bath particles, we derive exact expressions for
the full distribution P,(X) of the RTP position X and all its cumulants, valid for arbitrary values of the
tumbling probability o and time n. Our results highlight striking effects of crowding on the dynamics:
even cumulants of the RTP position are increasing functions of cv at intermediate timescales, and
display a subdiffusive anomalous scaling /7 independent of c in the limit of long times n — oo.
These analytical results set the ground for a quantitative analysis of experimental trajectories of real
biological or artificial microswimmers in extreme confinement.

1. Introduction

Stemming from experimental observations of bacterial motion [1], run-and-tumble particles (RTPs) provide a
canonical model for the theoretical description of biological or artificial self-propelled entities such as Janus
particles, bacteria [ 1-5], algae [6], eukaryotic cells [7], or larger scale animals [8]. In these examples of so-called
active particles, self-propulsion results from the conversion of energy supplied by the environment into
mechanical work [9, 10]. In its simplest form, RTP trajectories consists of a sequence of randomly oriented
‘runs’—periods of persistent motion in straight line at constant speed—interrupted by instantaneous changes of
direction (also named polarity of the RTP), called ‘tumbles’, occurring at random with constant rate.

The interplay between active particles and their environment has attracted significant interest recently [10].
Indeed, most motile biological systems such as bacteria or mammalian cells navigate disordered and complex
natural environments such as soils, soft gels (e.g., mucus or agar) or tissues. Through their interactions with the
environment, RTPs display robust non-equilibrium features, focus of many works. For example, recent
simulations explored the dynamics of active particles in the presence of quenched disorder as well as active baths
[11-15]. In confined geometries, active particles were found to accumulate at the boundaries, at odds with the
equilibrium Boltzmann distribution [16-21]. Such non-trivial interactions with obstacles can lead to effective
trapping and thus have important consequences in the dynamics of self-propelled particles in disordered
environments [22]. For example, it was recently shown that the large scale diffusivity of RTPs movingin a
dynamic crowded environment is non-monotonic in the tumbling rate for low enough obstacle mobility in
dimensiond > 2[23].

Effects of crowding are known to have particularly strong consequences in one-dimensional systems. In the
classical example of single-file diffusion, where identical passive particles diffuse on a line, hard-core interactions
impose conservation of the ordering of particles, thereby inducing long lived correlations in the motion of a
tagged particle and eventually a subdiffusive scaling of its mean squared displacement, MSD o /7 with time n
[24—32]. Physically, this results from the fact that displacements on increasingly large distances need to mobilize
the motion of an increasingly large number of particles. Single file diffusion has been experimentally observed in
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avariety of natural and man-made materials ranging from passive rheology in zeolites [33, 34], transport of
colloidal particles under confinement [35-39], to diffusion of water in carbon nanotubes [40, 41].

Diffusion under extreme confinement is also seen in biological settings with examples ranging from DNA
translocation [42, 43], transport of proteins in crowded fluids like the cytoplasm [44], transport of ions in
membrane channels [45, 46] and even migration of dendritic cells in lymphatic vessels [7]. Theoretically, recent
works have studied the dynamics of active and biased tracer particles in single-file systems [47-50]. Exact
predictions for the full distribution of particle positions were derived in the case of a tracer particle driven out of
equilibrium by external forcing in a dense single-file environment [51]. Despite few effort, analytical results for
the dynamics of self-propelled particles in complex and confined environments are still largely missing.

In this paper, we study a minimal model of self-propelled particle in a crowded single-file environment. Despite
the challenge of the inherent coupling between the dynamic environment of the tracer and its polarity, we derive exact
analytical results for the dynamics of RTP in the limit of high density of diffusive bath particles; in particular, we
provide expressions for the full distribution 7,(X) of the RTP position X and all its cumulants, valid for arbitrary
values of the tumbling probability o and time n. Our results highlight striking effects of crowding on the dynamics.
We show in particular that even cumulants of the RTP position are increasing functions of v at intermediate
timescales, and display a subdiffusive anomalous scaling o</7 with a prefactor independent of o in the limit n — o0.
We show a perfect agreement between our analytical predictions and the results of numerical simulations. We
generalize to RTPs questions that have attracted attention for passively diffusing and externally driven tracers. In
section 2, we provide the details of our model. The more technical sections 3 and 4 detail the necessary steps in the
derivation of our main results presented in equations (16) and (19) which we discuss respectively in sections 5 and 6.
Additional technical details of this derivation can be found in Appendices.

2.Model and RTP polarity dynamics

We consider a minimal model of run-and-tumble motion [1] discrete both in space and in time. We take a one-
dimensional lattice, infinite in both directions. The lattice sites are occupied by particles with mean density p
performing symmetric random walks; the bath particles interact via hard-core repulsion, i.e. the occupancy
number of each lattice site is at most equal to one. Attime n = 0, we place at the origin a RTP, which also
interacts with the bath particles via hard-core repulsion. In absence of bath particles, the RTP moves along the
direction of its polarity with probability p_, and in the opposite direction with probability p_such that

p, + p. = 1. Ateach time step, the RTP reverses the direction of its polarity with probability a.

While previous studies examined the dynamics of externally driven tracers [51, 52], we are interested here in a
model of internally driven self-propelled particles with an internal clock. Although in general p,_can take any
value between 0 and 1, we consider the limit of a self-propelled particle with infinite Péclet number [10]. Thus, if
its polarity is along e; (respectively, e_;), the RTP moves to its right with probability p; = 1 and to itsleft with
probability p_; = 0 (respectively, p; = Oandp_, = 1). In the absence of crowders, this model would produce a
dynamics equivalent to a persistent random walk.

We focus here on the limit of dense systems, i.e. the limit of low vacancy densities pg = 1 — p < 1.
Following [53], we formulate in this limit the dynamics of the vacancies rather than that of the particles which
equivalently encodes the dynamics of the whole system. We follow the evolution rules for the vacancies
previously established by [51, 53—55] in which we assume that each vacancy performs a nearest-neighbor
symmetric random walk everywhere on the lattice except in the vicinity of the RTP [56]. When surrounded by
bath particles, a vacancy thus moves to one of its neighboring sites with equal probability, thereby exchanging
positions with a bath particle. However, when the RTP lies on one of its adjacent sites, we accommodate the
nature of the RTP dynamics by implementing the following specific rules (as shown on figure 1):

+ ifthe vacancy occupies the site to the right of the RTP, the vacancy has a probability g, = 1/(2p, + 1) tojump
to the right (exchanging positions with a bath particle)and 1 — g, to jump to the left (exchanging positions
with the RTP);

« ifthe vacancy occupies the site to the left of the RTP, the vacancy has a probability g ; = 1/(2p ; + 1) tojump
to the left (exchanging positions with a bath particle) and 1 — gq_, to jump to the right (exchanging positions
with the RTP).

For instance, in the case of a RTP with positive polarity (i.e. polarity along e;), we know thatp; = landp_; = 0;
thus, we obtain in this caseq; = 1/3andg_; = 1. The case of a negative polarity can easily be deduced by
symmetry. Itis important to note that additional rules for the cases where two vacancies are adjacent or have
common neighbors would normally be needed to complete the description of the dynamics; however, these
cases lead to corrections in O( pg) and are thus unnecessary here. Although these hopping probabilities implicitly
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Figure 1. Model and evolution rule—The RTP (orange) moves through a bath of diffusive particles (blue), its polarity flips at each
time step with probability «; the RTP moves by exchanging positions with vacancies. We formulate this problem in terms of the
dynamics of the vacancies rather than that of the particles. A vacancy can (i) be surrounded by bath particles, (ii) have the RTP on its
left, (iii) have the RTP on its right. Here, the RTP is polarized to the right, so thatq; = 1/3andg_; = 1.

depend on the RTP polarity at a given time, the decoupling between the dynamics of the polarity and the
vacancies makes analytical calculations tractable.

Indeed, the polarity dynamics of the RTP is solely controlled by its flipping probability . We will denote S;(t’,‘,)
the probability for the RTP to have a given polarity p at time step k, knowing that it was vatk = 0. For all times k
assuming that we started with a positive polarity, we can write the following recurrence relation
S_(ﬁ = ankjf D4@a-oa Sﬂ: D=1-3§ ﬁk)r Using the method of fixed-points to solve this recurrence
relation, we obtain for a polarity y,

1 .
S = S+ (1= 2007 = 1 = ) atall times . )

For the sake of simplicity, we may write 5;5’,? = Sﬂ‘) and SE’;} =S ® in what follows.

3. Systems with a single vacancy

Following [54], we first consider an auxiliary problem: a system containing a single vacancy. We consider a
lattice on the integers I € [—L; L], the vacancy can occupy any site but the origin. We can write the probability to
find the RTP in position X at time #, knowing it started with polarity vat time n = 0 as an average over the initial
condition for the position of the vacancy Z,

Z=—L Z=1

—1 L
WW)ijzwwm+Zwam) )

with p,f”) (X|Z) defined as the probability to find the RTP in position X at a time n knowing its polarity was
initially  and that the vacancy started in Z. Trivially in the single vacancy case, the RTP can only be in one of two
positions which depend on the original location of the vacancy: if the vacancy startsin Z > 0 (respectively,
Z < 0),the RTP canbe foundin X = 0or X = 1 (respectively,in X = —1 or X = 0). The dynamics of the RTP
is dictated by exchanges of positions with the vacancies, as such it is controlled by the first-passage statistics of
vacancies to the position of the RTP. Clearly, there are four cases to consider in general, but symmetry
considerations reduce those cases to two: for a given initial RTP polarity, the vacancy can start (1) in front of the
RTP or (2) behind the RTP with respect to the direction of its polarity.

We can represent plf”) (X|Z) as asum over all passage events of the vacancy to the RTP location through the
following recurrence relation [51, 53, 55]

me&$%M%ﬂ+§%£asmm@@m@® 3)

with M (Z) the probability that the vacancy starting in Z exchanged position with the RTP in time n knowing
that it started with polarity  and sgn(x) the sign function taking valuesin { —1; 1 }. In equation (3), the first term

3
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on the right-hand side corresponds to the probability that the RTP has not moved, while the second term is
composed of a convolution between the probability to have exchanged positions in k steps and the probability
that the RTP travels the remaining X — sgn(Z) stepsintimen — k; in particular, we know that this probability
needs to be written with a polarity sgn(2) and that the vacancy now starts in —sgn(Z) (vacancy and RTP
exchanged positions). We note that the single vacancy propagator only depends on M (Z) and the propagator
in the case of a vacancy starting right next to the RTP. We denote F 51”13 the first-passage time (FPT) density in

X = Oforavacancy startingin ¢ = +1, knowing that the RTP started with a polarity vatn = 0. By symmetry,
we know that we can write:

Fo =F" =F, 4)
FO = FP =F®. (5)

In particular, we notice that M (Z) can be written as the convolution of the FPT density of a Pélya walk to the
adjacent site to the RTP and this FPT density of exchange of RTP and vacancy position, for a vacancy starting on
one of the lattice sites adjacent to the RTP. We thus write
k k k k k

M 2) = Z f (gxz(Z)Z LSPFG ) + SPF ), (©)
where f )((”) denotes the classical FPT density at the origin at time # of a symmetrical one-dimensional P6lya walk
starting at n = 0 at position X [56] and Ss(g"rz( .y the probability for the RTP to have a given polarity 4 at timestep 7,
knowing that it was vat n = 0 for which it is straightforward to obtain exact expressions (as introduced in section 2).
The two terms in equation (6) correspond to the two possible polarity states of the RTP at time k. In the particular case
ofavacancy starting in v = =1, this probability reads (see detailed calculation for each of the cases in appendix A)

PIEn) Xlp) = 6x,0(1 — ZFs(gr)l(W)] + Z Z 6Zi,lmk,néx’“[(‘l)j“]/z
p -

j=1my,---,m;j=0

f) .
X Fignun F2™ -+ F(’”f”(l - ZF(”J ™)

i=1

with ¢; jthe Kronecker delta. The first term in the right-hand side of equation (7) gives the probability that at
time n the RTP was never visited by the vacancy. The second term represents a partition over the number of visits
by the vacancy j and the waiting times between successive visits 71;and a last non-visiting event. Here, the key
step of our derivation is therefore to compute the FPT densities Fs(g"rz( vy Which a priori couple the polarity
dynamics and vacancy dynamics. Thanks to the Markovian dynamics of the RTP polarity, we obtain exact full
expressions for these FPT densities and their generating functions as shown in appendix B. For instance, we

show that F{" obeys the following recurrence relation

F'=( ~ a){(l — 4)bu1 + 4, z[ SN SEDEIR f1<“>s<kl>F<"k>]}

k=1

n
Lo Elifl(kf 1) S£k7 I)Finfk) 4 fl(kf 1) SEk*l)FEnfk):l' (8)
k=1

At each time step, the RTP (i) flips its polarity with probability o and (ii) attempts to make a step in the
direction of its polarity. The first term in equation (8) corresponds to the case where the RTP does not flip its
polarityat n = 1.In this case, we know that the RTP has a chance to exchange positions with the vacancy at
n = 1 (thisis the first term in the curly brackets), the second term is based on the probability that the vacancy did
not exchange positions with the RTP at n = 1but camebackin k — 1 steps while the polarity is still positive, and
the third term is based on the probability that the vacancy did not exchange positions with the RTPatn = 1 but
came backin k — 1 steps while the polarity flipped in the meantime. The second term in equation (8)
corresponds to the case where the RTP does flip its polarity at n = 1. This case is similar to the first term, with the
exception that we know that the RTP and the adjacent vacancy cannot exchange position at the first time step.

Defining the generating function of any time-dependent function g™ as g (¢) = > g™¢",
equations (3)—(7) imply that the generating function of the single—vacancy propagator can be written in terms of
the generating functions of the FPT densities above as

B, (Xlps & = 260l = Qannw B = DT B ©
(1—90+F)
where we have used the short-hand notations E. = E[(g ) and the original position of the vacancy, 1 = +1
(see details in appendix A).
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4. Systems with a small concentration of vacancies

We now consider a lattice containing a low concentration of vacancies po; we assume that the lattice of size 2L
contains M vacancies such that p, = M /2L. First, we consider the case of a fixed initial polarity for the RTP, v.
Following [53], we write P (X| {Z;}) the probability that the RTP with original polarity v is at position X at time
n provided that the M vacancies started at positions { Z;}jc[1,u)- At the lowest order in the vacancies density, we
consider the contributions of each vacancy to be independent and we write

PRXUZD = Y Sxnr - enPUGIHZD
Y. ¥y
M
o2 Sxneen T A (2, (10)
0 Y. ¥y j=1

where P™({ Y} [{Z;}) is the conditional probability that in time  the RTP has performed a displacement Y; due
to interaction with the vacancy 1, Y, due to interaction with the vacancy 2 etc. We define the Fourier transform in
spaceas F{X} = X*(q) = > y el?X (y), where the sum runs over all lattice sites. In Fourier space and averaged
over the initial distribution of vacancies positions (assumed to be uniformly distributed on the lattice, except for
the origin which is occupied by the RTP, and denoted with a bar), the total contribution of the M vacancies
reduces to a superposition of the contributions of single vacancies providing us with a formal relationship
between the general propagator and the single vacancy propagator

Pl m = 15 mI" ~ 1= pyQu(q, m), (1n

where we impose L, M — oo (while py is kept constant) and we define

n +0oo
SM%M=§1D—ﬁMPhn—MWQ:M@@)

k=0 Z=1

-1
+[1—pigl + Ln— ke Y M(Vk)(Z)]. (12)

Z=—00
Lastly, we average over the initial polarity of the RTP to obtain
_ 1, - _
P m = - [PX(g, m) + PX(q, m] ~ 1= pCa, m) (13)
0

with Q(q, n) = [Q4(g, n) + Q_(g, n)]/2. The generating function of the second characteristic function,
which is defined as ¢ (g, £) = 3200 In (el#%:) £, satisfies the following relation
lim £@ 8 _ ~0(g, ). (14)
Py—0 Po

After lengthy but straightforward algebra (see details in appendices C and D), we proceed to an expansion of
Q(g, &) in power series of q to obtain

oo 1+ (= D"IE + ElGig)"/n!

Qg O =— —
20 -1 -1 -1 -)/H0 +E)

15)

We now have all the tools to derive our central analytical result which defines the exact (in the leading order
in py) cumulant generating function. The cumulants «; of arbitrary order jare defined by
In[P*(q, n)] = Z]?i L n&”) (ig) / j!. We can identify equal order terms in both expressions and find

_ P [1 + (=DIIE() + E(©)]
P02 (1= 90— (1 =1 - €)/H0 + E©)

ki(§) (16)

Recalling that the FPT densities E,(£) are explicitly given in appendix B in terms of the tumbling probability
(appearing explicitly through the Poissonian dynamics of the polarity), equation (16) provides an expression for
all cumulants exact in the leading order in p, in Laplace space. Equation (16) together with its asymptotic
analysis in equations (17) and (18) constitute the main result of this paper. Strikingly, all cumulants of same
parity are equal and in particular, all odd cumulants are identically equal to 0. While we easily understand why
odd cumulants in a process averaged over the initial polarity should be zero, it is interesting to note that in the
case where we fix the initial polarity of the RTP, the odd cumulants were non-zero but decaying as

5
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a=05

Figure 2. Mean square displacement of the RTP—shown for various tumbling probabilities o € [0.01; 0.5] showing an «-dependent
transient to a subdiffusive long-time scaling independent of a; atlong times, MSD(n) — /2n/7 (dashed black line).

1/n (see appendix C.4). As a side note, we show in appendix C.5 that our predictions retrieve the results for the
infinitely biased tracer particle in the « — 0 limit [51].

5. Cumulants in the long-time limit

We expand the generating function of the even cumulants in power series of 1 — & (which is equivalenttoa
long-time limit expansion)
lim %CVCH (é-) — L 1 _ ’\/a 1
Po—0 Po Sad \/5(1_5)3/2 2\117041_5

Using Tauberian theorems [57], we can invert term by term this expression and we obtain in the time
domain

+ OQ). (17)

g foen _ [2n &

pe—=0 pg MmN T 241 — «

From equation (18), we first notice that the leading asymptotics are surprisingly independent of the tumbling
probability cv. In figure 2, we show that the mean-square displacement of the RTP converges in the long-time limit
to the anomalous subdiffusive scaling observed for passive single-file diffusion. This comes from the fact that, for
all finite values of o, the statistics of the waiting times between successive steps of the RTP is asymptotically
independent of . Secondly, by obtaining higher order terms in the expansion of the cumulants, we realize that o
enters in the first subleading order term with the expected monotonicity. As shown in figure 3, as the tumbling
probability decreases (i.e. the more persistent the RTP becomes), the importance of the higher order terms in the
expansion decreases and the dynamics of the RTP converges faster to the classical single-file scaling.

Surprisingly, we observe that the time-averaged MSD decreases faster for smaller o for short timescales t <
1/ (see figure 2). This counterintuitive result is opposite to the monotonicity expected in the absence of obstacles.
After this transient, one recovers the expected monotonicity of the MSD with respect to tumbling probability for
t > 1/a. Thus, the time-averaged stationary mean-square displacement (figure 2) shows an inversion of
monotonicity of the second cumulant compared to that of the ensemble-averaged cumulants (figure 3) in the
n — 0limit, a common signature of aging phenomena. Namely, this result suggests that the stationary distribution
of vacancy positions is different from the Poissonian initial conditions we consider in the derivation leading to
figure 3. Indeed, the bath particles density displays fluctuations in the vicinity of the RTP (with an increase of
particles density in front of the RTP and a decrease at the back). This implies that a higher persistence canlead to a
slowing down of the dynamics at short timescales, a counterintuitive idea reminiscent of the concept of negative
differential mobility observed for biased tracers and RTPs in crowded environments [23, 52, 58].

+ o(n~1/2). (18)

6. Full statistics of the RTP position

Finally, the equality of same parity cumulants (to leading order in p,) implies that the associated distribution is of
Skellam type, i.e. the distribution of the difference of two Poissonian random variables [59]. As a consequence,
our results provide the complete distribution of RTP positions F,(X) for any time 1, which in our case simplifies
to
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Figure 3. Reduced cumulants—(Top) Reduced cumulants &), = £ / (py~+/2n/m) versus time n for several tumbling probabilities,
showing transients dependent on « (increasing « from yellow to blue) obtained from the inversion of equation (16); (Bottom) Reduced
cumulant for a tumbling probability v = 0.3 and a vacancies density of py = 0.001, from inversion of equation (16) (solid line),
numerical simulations (symbols) and first higher order term in the Taylor series of the cumulants as in equation (18) (dashed line),

1 — &, = T'(a) /1. The a-dependance of the higher-order term is shown in inset.

1 = 1000
n = 10000

0.75 ke n = 100000 4
A n = 1000000

Figure 4. Distribution of positions of a RTP with random initial polarity 73,(X), tumbling probability @ = 0.2 and vacancy density
po = 0.01 for various times n = 10%,10*, 10° and 10° (from yellow to blue), for numerical simulations (symbols) and theoretical
predictions obtained from equation (19) (solid lines).

Ko + Ko ) m 2
even
7)71(X) ':')0 exp(_’%(er\lf)en ) ?n) Ix( K’(ez)enz - ’kaondd )
Po Reven = Rodd
o 5P () Ix (KGen D, (19)
0

where I is a modified Bessel function of the first kind [60]. Figure 4 shows a perfect agreement between the
predicted distributions and our numerical simulations. In the long time limit, we recover the results derived by
[25] and [61]. The expression for the distribution of positions reduces to

2109 o exp (—po+/2n/m)Ix (py+/2n/T). (20)

Importantly, we find that independently of the tumbling probability the rescaled variable X / 2 pé n / ) /4 s
asymptotically distributed according to a normal law.

7
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7. Conclusion

Using a lattice model, we derived expressions for the full statistics of positions of RTPs with arbitrary tumbling
probability o in dense single-file environment. Our predictions are exact to the leading order in vacancy density
po — 0. We have shown that the asymptotic dynamics of the RTP displays an anomalous subdiffusive scaling
o«/n with prefactor independent of cv. Further, we highlighted the presence of aging in this system for which the
stationary distribution of bath particles is not Poissonian but displays density fluctuations in the vicinity of the
RTP leading strikingly to a slowing down of the short timescale dynamics for more persistent RTPs. RTPs are a
canonical model of natural and artificial self-propelled particles; as a consequence, we believe that these exact
results will find a wealth of applications; they set the ground for a quantitative analysis of experimental
trajectories of real biological or artificial microswimmers in extreme confinement.

Appendix A. Single vacancy propagator

In this appendix, we provide details about the calculation of the single vacancy propagator. First, we consider the case
where Z > 0and the RTP started with a positive polarity at n = 0. We can write the following recurrence relation:

n

P (X12) = 5X,0(1 -S> MP (Z)] + 3PP -1 - yMP @) (A1)
k=0 k=0

with MY (Z) the probability that the vacancy starting in Z exchanged positions with the RTP in time 1 knowing

that its polarity was + at n = 0. In particular, we notice that M{" (Z) can be written as the convolution of the

FPT density of a Pélya walk to the adjacent site to the RTP and the FPT density of exchange of RTP and vacancy

position, for a vacancy starting on one of the lattice sites adjacent to the RTP knowing the polarity of the RTP.

n n
k k —k k k —k

M®P(z) =350 k=0

n n

> fikl)fzs(fif(flk) + > fikl),zsikif(f:k) for Z<0

k=0 k=0

(A.2)

where f )((”) denotes the FPT density at the origin at time n of a symmetrical one-dimensional Pélya walk starting
in position Xatn = 0Oand F EZ} is the FPT density of exchange of the positions of the RTP and the vacancy in
time 1, knowing that the RTP started with an initial polarity v and the vacancy started in Z = p1. Full

expressions for those FTP densities are derived in appendix B. We note that we have similarly

n n
SR SPFER 4SO sOFeD for >0

MM (z) =0 k=0 (A.3)
SO W SO FER LS B SO FECTR for Z <0
k=0 k=0

In equation (A.1), the first term corresponds to the probability that the RTP has not moved and the second
term is composed of a convolution between the probability to have exchanged positions in k steps and the
probability that the RTP travels X — 1stepsintimen — k, granted thatithad a polarity +atn = 0 and that the
vacancy started now in —1 (vacancy and RTP exchanged positions).

Similarly in the case Z < 0, we have:

P (X|12) = 6X,0[1 - >MP <Z)] + 3" P+ 1+ HMP©2) (A4)
k=0 k=0
(in this expression the second term contains the probability p~ M (X + 1|41) because we know that the
propagator needs to be shifted following interaction with the vacancy coming from the left of the RTP and the
fact that the polarity had to flip in order for the RTP and the vacancy to exchange positions).
By symmetry, we obtain similarly

5X,0(1 — ZMU‘)(Z)) + 3PP -1 - D MP©2), ifZ>0
k=0 k=0

P (X12) = &.5)

5X,0(1 - ZM@(Z)) + 3" P+ 1+ MB @), iz <0
k=0 k=0
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As we can see from equations (A.1), (A.4) and (A.5), finding the general single vacancy propagator reduces to
finding an expression for the single vacancy propagator in the case of a vacancy adjacent to the RTP. With some
care, the general single vacancy propagator can be expressed using the first-passage statistics of the vacancy
starting on a site adjacent to the RTP to its position. For instance, the probability to find the RTP in position X in
time n knowing that the RTP started in X = 0 with a positive polarity and a vacancyin Z = +1 reads:

P (XI+1) = 5X,0[1 - Z]—"ﬁ}r]

j=0

+ 5X OZ Z . Z 6ZZJ+1 fg:ni)f(,mi).?(fi) (WZJ)[ Z ]_-(k) )

j=1m= mMyj41=0
o0 o0 o0 mzj

o) 2o e X b5, FUNFURF .szf”[1 - Zf%]. (A.6)
j=1m=0 mZJ—O =t _

Equation (A.6) is composed of three terms:

(i) the RTPisin 0, it was never visited by the vacancy;

(ii) the RTP is in 0, it was visited an even number of times; this term contains 2j visits and 1 last non-visiting
event;

(iii) the RTPisin 1, it was visited an odd number of times; this term contains 2j + 1 visits and 1 last non-visiting

event.

Taking the discrete Laplace transform of equation (A.6) and denoting the FPT densities ]—7“,(5 ) = gn( ) for
the sake of simplicity, we find

- K 1-F) X - o 1-F) &4 a
p(XI+1; &) = o, o( +) + 6x,o( ) ZFJ,ZJ g 6X,1( ) ZF+F,2] (A.7)
—¢ ¢ o ¢ =
which finally reduces to
~ Sx0(1 — E + E) + 6x,.F,
BXI+1; 6) = x,0( - ) + Ox1 o (A8)
(11— +F)

Similarly, we find that

j=0
0o 00 00 myjq
F o)) D e D Sy, FUPFRFT Frolr - ST F®,
j=1m=0 myj41=0 = k=0

e FOVFED ]—'(_mf‘)(l - 2?3’9). (A9)

Taking the discrete Laplace transform of equation (A.9), we obtain:

~ Ox,0 + Ox 711?7
X-18 = ———. (A.10)
AL = T B

By symmetry, we can write the remaining two cases

~ 6X0+6X1ﬁ—
) (X415 ) = ————, (A.11)
PO = i+ )

. Ox.0(1 — F + E) + 6x_F,
Px-1; 6= ol B HE) + onf (A.12)

(1 -6 +E)
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Finally, we realize that the single vacancy propagator only depends on the FPT densities F iﬁf,

n n —1
B (X) = 5X,0(1 -1y sz,k><z>] L LS x4 Y MO@)
2L ;20 =0 2L 5 =1

n L
+ LI -1 = Y MO @), (A13)
2L (5 71

We provide a full derivation of those quantities in appendix B.

Appendix B. First-passage time densities for vacancies adjacent to the RTP

Knowing that the RTP polarity is in a given state at » = 0 and that a vacancy is adjacent to the RTP at that time,
we want to calculate the probability that a first interaction (i.e. exchange of positions) will happen at time 7. In all
generality, there are four possible configurations to consider at n = 0 assuming that the RTPisin X = 0:

+ RTP polarityis (+) and the vacancyisin X = +1;
+ RTP polarityis (+) and the vacancyisin X = —1;
+ RTP polarityis (—) and the vacancyisin X = +1;

+ RTP polarityis (—) and the vacancyisin X = —1.

We denote F 21,,) the FPT density in the case where the RTP polarity is originally ~ and the vacancy started in
Z = pl. Wewill detail here the derivation on an example. We will consider that the polarity is positive atn = 0.
Knowing thata vacancy is next to the RTP at n = 0, we want to calculate the probability of first interaction
(exchange of positions) at time #. In this particular case, the vacancy has a chance to interact with the RTP at the
first time step, and we can express this quantity via the FPT density at the origin at time # of a symmetrical one-
dimensional Pélya walk startingat n = 0 at position / and denoted fl(") . Thus, we write the FPT density as the
following convolution:

FP = - a){(l — @)1+ g D LAV SEVFE 4 ffk‘”S“‘;”fT"‘ﬁ}
k=1

n
+ad [fEVSEVFER 4 phD gk Femhy, (B.1)
k=1

Similarly, for a vacancy starting on the left of the RTP with a positive polarity, we write

F® = a{(l — @)1+ q O [fEVSEDFET 4 fl"“”Sﬂ““J’f(”;"’]}
k=1

+ (1= ) [fEVSEDFETR 4 flmD gD gy, (B.2)
k=1

For a given vacancy position, the polarity of the RTP can be pointing towards the vacancy or not. By
symmetry, we only need to compute these two cases. We denote F" the FTP density for the case where the
vacancy is on the right side of the RTP given its polarity, while we denote F ™ the inverse case and we have,

FP =F" = F", (B.3)
FW = F® =F®, (B.4)

Furthermore, by definition, we can also write that fl(") = ff’}) For the sake of simplicity, we will define :

g = firD Sl = flmbgnh, (B.5)
gfn) — ff}’l—l)s(ﬁn{; 1) — fl(n—l)sjrn: 1)‘ (B.6)

We can study the discrete Laplace transform of these two quantities, defined as: F (¢£) = >l o &"F (n). Using
the convolution theorem, we obtain:

E©=0 - {1 - g)&+ q[g.(OF©) + Z(OE®N
+ alg (OE©) + . (OE©)], (B.7)

10
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E©=af( — g)¢+ q[8 (OE©) + (OF 1}
+ 1 - ®[E(OE® + g (OFE©] (B.8)

We can combine equations (B.7) and (B.8) to obtain finally

A—-gpll —a—-(010-20)g I

E(&) = , (B.9)
@ 1= (1 + gDl — @), (©) + ag (O + ¢,(1 = 20)[g} (&) — 2(©)]
P:({) _ (1 : ql) [a +A(1 - 20&)?7({)]5 — — . (B.lO)
1 =1+ ) = g, (§) + ag (O] + q,(1 = 2)[g () — §(9)]
Goingback to the definition of the discrete Laplace transform, we obtain the following expressions
g =3¢ +a-20h/2= %[f](ﬁ) + {1 = 20)9), (B.11)
n=1
2O =X €70 - (= 2000 /2 = $17© - i - 2009) (.12)
n=1

with by definition of a Pélya walk:

1-yl-& VISZJM‘ (B.13)
3

ﬁ@z[

As a conclusion, we have obtained exact expressions for the FPT densities we needed to complete our
expression of the single vacancy propagator.

Appendix C. Single file with a small concentration of vacancies

In this appendix, we consider the case of a small but finite concentration of vacancies, we assume that the system
contains M vacancies such that p, = M /2L. We will start by deriving expression for the cumulants, exact in the
linear order in the density of vacancies. We will then show that our results are consistent with the results in the
case of abiased tracer particle (derived in [51]).

C.1. Case of a fixed initial polarity

First, we consider the case where we fix the initial polarity of the RTP. Following Brummelhuis and Hilhorst
[53, 54], we write in general P (X| {Z;}) the probability that the RTP is at position X at time n provided that the
M vacancies were at positions { Z;};c(1,pjand the RTP polarity was vat n = 0. We can write:

POXUZY) = > Sxve v PPUYIHZY, (C.1)

where P ({ Y;}[{Z;}) is the conditional probability that, within the time interval 1, the RTP has performed a
displacement Y; due to interaction with the vacancy 1, Y, due to interaction with the vacancy 2 etc. In the lowest
order of the vacancy density py, the vacancies contribute independently to the displacement:

M
POUYIZD = [T 2" i1z). (C2)

—0 =1

Thus, we can express this probability as a function of the single vacancy propagator:
M
POXHZY = 30 Sxeon [T 87 (Y12, (C3)

=0 v Ty, j=1

If we suppose that the vacancies are uniformly distributed, we can average P (X| {Z;}) over the initial
distribution of vacancies:

M
PPX) = Sxye.w ] P YZ), (C4)
Yiy.., s j=1
™~
= > Sxvrw 1] B (Yi1Z) (C5)
Yoo ¥ j=1

11
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M
= > bxvtow L1 BV (C.6)
=1

0
o= Y., Yy

By definition, the Fourier transform in space is written as:
400

FIX) =X¥q = Y e9X(y), (C7)

y==—00

where the sum runs over all lattice sites.

For the sake of simplicity and without loss of generality, we can assume that the polarity is always positive in
n = 0. Asa consequence of equation (C.6), the probability averaged over initial conditions for the vacancies
reduces in Fourier transform to

Pi(q, n) = [5f(q, mM. (C.8)

From equation (A.13), we write in Fourier space:

—1

i} 1 & ‘
g m=1-— oL Z[[l — P+ — ke 3 MP(©2)
k=0

Z=—L

L
-+U—ﬁww—hn—mwQ}M@@ﬂ. (C.9)

z=1
We can rewrite equation (C.8) as:

Sk 1 o1 M
Pi(g; n) = [1 - Zm(q, n)] , (C.10)

where we define the following quantity

n -1
Qg m = Z[[l —pr@l+1n — ke S MP2)

k=0 Z=—L
+L

+ 1 —piql — 11— k)e"q]ZMS’f)(Z)]. (C.11)
Z=1

By definition of the Fourier transform for a random variable X, :

Pi(g, n) = (e, (C.12)
The cumulant generating function, defined as 1), (q) = In (e!#*.), reads in the limit of low vacancies density
(po < 1)
Un(@) =InPigm) ~ = pgQi(gm) (C.13)
0

with p, = M/2Land M, L — oo. Thisleads to the Z-transform relation:

im0 28 = 5 0. g, et = 000, © 1
0 k=0

By discrete Laplace transform, we obtain:

~ 1 N . 1 ~ ;
Q.(4, ) = [? - p*@l+1, f)elq]h(f) + [: —pi(ql -1, f)e‘q]h+(§) (C.15)
with b, = XX ﬂ+(§ ), we provide full calculation and expressions for these quantities in appendix C.2.

C.2. Calculation of h,
We have already noticed (in section 3 and appendix A) that:

n n
k) gk —k ISIRN —k
> féLSJ(rl}—(er )+ > fé,)lsilf&’_ ) forZ >0
MED =1 o : (C.16)
SO SPFEO L SO SO FEP forz <0
k=0 k=0

12
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The associated generating functions are thus simply:

_ f, S (6E 7,5 E forZ >0
wuzasz:ﬁ”@+%li@(? et (C.17)
S ©OE© +1,_,S (OF©) forz<0
In particular, we have
E§R®=§&@+&@a—mm, (C.18)
Eiia=§&®—&@a—mm. (C.19)
Finally, we can write that:
h(©=> M.(Z ©
Z=1
:lrﬂotf@>+ E© - E© } 20
2l 1-£© 1— £ (€0 - 2a))
We can also write:
—1
h(©= > MZ§
Z=—00
:%a@fﬁ@)_ a@—F@>} can
2l 1-F© 1 — £ - 2a))

In conclusion, in general, we have:

%MHMHM E@ﬁ@} .

B (€) = ~ gn (1) —
. 2l 1-£© 1 — £ (€01 = 2a))

C.3. Expression for the cumulants with positive initial polarity
From equations (A.10) and (A.11), the Laplace-Fourier transform of the single vacancy propagator is given by:

. 1 + e ME (£)

*(g]—1; — 2 s C.23
Pl S TS0 E@) (2
Pl o = — - E(E) (C.24)

(1 -9+ E©)
Combining equations (C.15), (C.22), (C.23) and (C.24), we finally obtain:

1 — e E©O+FE©  FE©-F©
21—+ E©1 1-£ 1— £ = 2a))

i 1 — el _ E(§) + E(§) n F{ﬁ) —EQ© | (C.25)
2[1 = &I+ E©OI] 1-£ 1— (1 - 20)

(g, =

On one hand, we can proceed to the expansion of §+(q, &) in power series of g:

5 E(9) + E© =, (ig)! 4
Qi(g, O =~ AL - 1+ (1]
’ H1—8U+E@ﬂﬂ—ﬂ@HZ%ﬂ
E(&) - E© i@ﬂh@ﬁl ©.26

21— &0+ E@OIN - fEQ — 2001 S !

Recalling the definition of the generating functions of the cumulants fi&”) of arbitrary order j, we can write

Uu(@) =InPig,m) =) 7, (ig)) = —po2i(q, n). (C27)
=1 J

13
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So we can identify same order terms and write that:

Ri(6) = Py {F+<§>+F_(£>[1 ]

=0 21 — €L+ EO1| 1-£(9)

F+£€) — E(§) 11— (—1 b (C.28)
1 — (€1 = 2a))

Equation (C.28) provides an exact expression of the cumulants in the Fourier-Laplace space. Recalling that
the functions F, (&) are explicitly given in appendix B in terms of the tumbling probability, this equation gives an
expression of the cumulants of arbitrary order.

C.4. Cumulants in the long-time limit

From equation (C.28), we see that all odd cumulants have the same generating function K44 (£) and all even
cumulants have the same generating function Reye, (§). We recall that the expression for the E(©)is given by
equations (B.9) and (B.10). We can thus proceed to an expansion in power series of 1 — £ (which is equivalent to
along-time expansion in the time domain) of the generating function of the cumulants and using the fact that

q1 = 1/3, we find that:

lim Rodd(§) V2(1 - 20a)?

= + OQ1), C.29

p—0  py &1 4\/04(1 — a)[\/a(l —a) —alyl = ¢ . ( :
. //%even(g) _ L 1 1

,};To . ST + O( — 5]' (C.30)

At this point, it is useful to remember the Tauberian theorem [57]. For a time-dependent function ¢ () and
its associated generating function ¢ (§) = Y02 | ¢ (n)¢", if the expansion of ¢ (£) in powers of (1 — &) has the
form

~ 1 1
) ~ 1= g)x@(l — g]' (C31)
Then, the long time behavior of ¢(n) is given by
~ -1
o) ~ T (X)nx ®(n), (C.32)

where I is the usual gamma function. This relation holdsif x > 0, ¢(n) > 0, ¢(n) is monotonic and P is slowly
varying in the sense that

lim 249 _ (C33)
x—00 P(x)
forany A > 0.
Using the Tauberian theorem, we find that the long-time behavior of the odd cumulants is given by
— 902
Jim fodd() d - 29 +o(1/n), (C.34)

w0 py o JBrnJa(l — o) [Ya(l — @) — a

and along-time behavior of the even cumulants given by

lim feven( 20y (C.35)
ﬂ0_>0 pO n—oo T

We note that remarkably the leading order in time of the even cumulants does not depend on «, while the
leading order in time of the odd cumulants does and decays to zero in the long time limit. The asymptotic
behavior of Keyen(n) tells us that the variance of the RTP position grows as +/#, this subdiffusive behavior is the
one obtained for the classical symmetric single file dynamics.

C.5. Retrieving the case of a biased tracer particle in the « — 0 limit

For sanity, we can check our calculation against the result for a biased tracer particle (TP) [51]. In this section, we
will check that our derivation for a run-and-tumble tracer particle in the limit o — 0 gives the same prediction as
in the case of an infinitely biased TP. In particular, we recall that the cumulants of all order in the biased case are
given by:

14
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lim A/ © — Q- E) + (-1D)/E,(1 - E)
Py—0  pg a-a-0a - \/1,—52)/5)(1 . ﬁlﬁ—ﬂ

where B, = (1 — qilf)/(l —q,,(1 — /1 — &*))and g, defined as in the RTP case. In the case of an infinite
bias, weknowthatq, = 1/3andq_, = 1leadingto

. RO 26
w0 Py (1= -1 —1-)/oe+1-¢)

In the run-and-tumble case, we need to first take the limit of low tumbling rate, o« — 0, before taking the
limit of long-times. Using equations (B.9) and (B.10) with q; = 1/3, we can write the FTP densities as:

(C.36)

(C.37)

E© = ﬁ (C38)
E(¢) =o. (C.39)

Injecting this result in equation (C.28), we obtain that for all orders:
tim &) _ (C.40)

26
w0 Py 1—O0 -0 - J1-)/oe+1-¢&)

We notice that: (1) cumulants in the infinitely biased case and the RTP case in the limit & — 0 are equal and
(2) expressions for the cumulants for all orders are equal. This means that in all cases, all cumulants are equal and
in particular, an expansion in power series of 1 — & gives:

. Ri(© 1 1 1
| ! = — 0O . C.
P P N T [\/15] A

Hence, we conveniently retrieve the biased case in the zero tumbling rate limit (o« — 0).

Appendix D. General case: random initial polarity

We generalize in this appendix our derivation to the case of a random initial polarity to obtain the cumulants and
full statistics for the RTP position. For that, we need to average over trajectories conditioned with positive and
negative initial polarity.

D.1. Cumulants in the case of a negative initial polarity
Itis rather straightforward to calculate the specific case of a fixed negative polarity and check that it gives us the
expected result considering the derivation in appendix C. Similarly to the previous derivation, we write in this case

PX(q, n) = [p*(q, mIM. (D.1)

From equation (A.13), we can write:

n -1
P m=1-— L Z[[l - p*@l+1;n — ke S MP(2)
2L 1o Pty
L
+ 1= pial — 15 n — ke Yo M® (Z)] (D.2)

zZ=1

Following the same procedure and definition as in appendix C, the previous expression expanded reads

5 F() + E(©) =, (ig)! :
Q(q 8=~ — — 1+ (=]
201 — €1 + E©I[1 — £(9)] ; i
F(9) — E(©) i @ i, 03)

+ = = ;
2[1 = &I + E@OI — €A = 2a)] 551 7!
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Finally the cumulants are given by identification of the nth order terms in the development, and we obtain:

R Po E©+E© :
(©) = _ L [1+ (=1)]
Ri(8 P—0 2[1 — €)1 + F(&)]{ 1—£©
L _BO-EQ (_1)11}, (D4
1 -0 = 2w)

Comparing equations (C.28) and (D.4), it is easy to see that these expressions will yield the same cumulants
for all even orders, and cumulants with opposite signs for all odd orders.

D.2. Expression of the cumulants in the general case
The final step is now to average over the initial polarity, we condition on the polarity right after the averaging
over initial conditions for a small concentration of vacancies. As such, we write:

P, m) = 1PHG, n) + PX(q, ) (D.5)
Reinjecting in this expression equations (C.8) and (D.1), we obtain
PX(gq, n) = %[[ﬁf(q, mIM + [p*(q, n)]M] ol poS2 (g, m) (D.6)
with Q(q, n) = [Q4(q, n) + Q_(q, n)] /2 when L, M — co. In the Laplace domain, we obtain then
0, € = 710409, © + ©-(g, O] (D.7)
ie.
Mg, &) = — E© +E© D (i73j [1+ (-1 (D.8)

201 = €111 + B — £ O 5=
As usual, the expression for the cumulants is given by identification of the terms in the expansion and we get

R = 1o E@© 1+ EC©) [+ (=1, (D.9)

w0 2 (1= (1 — £ + E(©)

As a conclusion, we can easily see that all even cumulants are equal, as are all odd cumulants. We obtain the
following final cumulants

i Feven(®) _ E©+E©
=0 Py 11— -1 —J1-)/6O0 +E©)

(D.10)

Jim foad© (D.11)
Po—0 Py
We realize that all odd cumulants are identically equal to 0. As for the even cumulants, they present the same
form as the even cumulants in the case of a positive conditioning, which was expected as the initial polarity only
affects the dynamics until the first polarity flip. We can proceed to a power series expansion of the generating
function of the cumulantsin 1 — ¢ including the first non-zero subleading order term and we get:

lig feen® 1L 1 Ja 1
0 py N2 (=92 2JT—al-¢

This expression can be inverted term by term and we obtain in time domain

lim Heven(m) 20 o O(L) (D.13)
=0 py  mme N 2Vl — « Jn
In particular, the second cumulant is by definition the mean-square displacement of the RTP. Although we

can see that the transient depends on the tumbling probability, the MSDs display a </# long-time scaling
characteristic of the original single file process that is in particular independent of cv.

+ O0Q). (D.12)
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